
IEEE Std 1609.2™-20XX
(Amendment of

IEEE Std 1609.2-2016)

“IEEE Standard for Wireless Access in
Vehicular Environments—Security
Services for Applications and
Management Messages” –
consolidated draft of IEEE 1609.2-2016
with amendments specified in 1609.2a /
D8

Sponsor

Intelligent Transportation Systems Committee
of the

IEEE Vehicular Technology Society

IEEE-SA Standards Board

Abstract: This standard defines secure message formats and processing for use by Wireless
Access in Vehicular Environments (WAVE) devices, including methods to secure WAVE
management messages and methods to secure application messages. It also describes
administrative functions necessary to support the core security functions.

Keywords: cryptography, IEEE 1609.2™, security, wireless access in vehicular environments
(WAVE)



The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2016 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1 March 2016. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics
Engineers, Incorporated.

PDF: ISBN 978-1-5044-0767-0 STD20841
Print: ISBN 978-1-5044-0768-7 STDPD20841

IEEE prohibits discrimination, harassment, and bullying.
For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission
of the publisher.

http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices

and disclaimers, or a reference to this page, appear in all standards and may be found under the heading

“Important Notice” or “Important Notices and Disclaimers Concerning IEEE Standards Documents.”

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards
Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are

developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards

Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consensus

development process, approved by the American National Standards Institute (“ANSI”), which brings

together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are

not necessarily members of the Institute and participate without compensation from IEEE. While IEEE

administers the process and establishes rules to promote fairness in the consensus development process, IEEE

does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of

any judgments contained in its standards.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and

expressly disclaims all warranties (express, implied and statutory) not included in this or any other document

relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a

particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of

material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE

standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there

are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to

the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and

issued is subject to change brought about through developments in the state of the art and comments received

from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other

services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any

other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his

or her own independent judgment in the exercise of reasonable care in any given circumstances or, as

appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE

standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO:

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON

ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND

REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event

that an IEEE standard is translated, only the English version published by IEEE should be considered the

approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board

Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its

committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures,

symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall

make it clear that his or her views should be considered the personal views of that individual rather than the

formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of

membership affiliation with IEEE. However, IEEE does not provide consulting information or advice

pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a

proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a

consensus of concerned interests, it is important that any responses to comments and questions also receive

the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards

Coordinating Committees are not able to provide an instant response to comments or questions except in

those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to

interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome

to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

 Secretary, IEEE-SA Standards Board

 445 Hoes Lane

 Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the

provisions of any IEEE Standards document does not imply compliance to any applicable regulatory

requirements. Implementers of the standard are responsible for observing or referring to the applicable

regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not

in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws.

They are made available by IEEE and are adopted for a wide variety of both public and private uses. These

include both use, by reference, in laws and regulations, and use in private self-regulation, standardization,

and the promotion of engineering practices and methods. By making these documents available for use and

adoption by public authorities and private users, IEEE does not waive any rights in copyright to the

documents.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy

portions of any individual standard for company or organizational internal use or individual, non-commercial

use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer

Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy

portions of any individual standard for educational classroom use can also be obtained through the Copyright

Clearance Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time

by the issuance of new editions or may be amended from time to time through the issuance of amendments,

corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the

document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years

old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of

some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that

they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended

through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at

http://ieeexplore.ieee.org/xpl/standards.jsp or contact IEEE at the address listed previously. For more

information about the IEEE SA or IEEE’s standards development process, visit the IEEE-SA Website at

http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL:

http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata

periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter

covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the

existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has

filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-

SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate

whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or

under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair

discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not

responsible for identifying Essential Patent Claims for which a license may be required, for conducting

inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or

conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing

agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that

determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their

own responsibility. Further information may be obtained from the IEEE Standards Association.

http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org/
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/about/sasb/patcom/patents.html

Copyright © 20XX IEEE. All rights reserved.

vi

Participants

At the time this IEEE standard was completed, the Dedicated Short Range Communications Working Group

had the following membership:

Thomas M. Kurihara, Chair

Justin McNew, Kevin Smith, William Whyte, Vice Chairs

The following members of the individual balloting committee voted on this standard. Balloters may have

voted for approval, disapproval, or abstention.

When the IEEE-SA Standards Board approved this standard onXXX, it had the following membership:

 *Member Emeritus

Copyright © 20XX IEEE. All rights reserved.

vii

Introduction

This introduction is not part of IEEE Std 1609.2™-2016, IEEE Standard for Wireless Access in Vehicular

Environments—Security Services for Applications and Management Messages.

5.9 GHz Dedicated Short Range Communications for Wireless Access in Vehicular Environments

(DSRC/WAVE, hereafter simply WAVE), as specified in a range of standards including those generated by

the IEEE P1609 working group, enables vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

wireless communications. This connectivity makes possible a range of applications that rely on

communications between road users and road operators, including vehicle safety, public service, commercial

fleet management, tolling, and other operations.

With improved communications come increased risks, and the safety-critical nature of many WAVE

applications makes it vital that services be specified that can be used to protect messages from attacks such

as eavesdropping, spoofing, alteration, and replay. Additionally, the fact that the wireless technology will be

deployed in personal vehicles, whose owners have a right to privacy, means that in as much as possible the

security services should respect that right and not leak personal, identifying, or linkable information to

unauthorized parties.

With this in mind, at the time that IEEE P1609 was established to develop the standards for the WAVE

wireless networking protocols, the IEEE also established IEEE P1556 (later renumbered as IEEE Std 1609.2)

to develop standards for the security techniques that will be used to protect the services that use these

protocols. These applications face unique constraints. Many of them, particularly safety applications, are

time-critical: the processing and bandwidth overhead due to security must be kept to a minimum, to improve

responsiveness and decrease the likelihood of packet loss. For many applications, the potential audience

consists of all vehicles on the road in North America; therefore, the mechanism used to authenticate messages

must be as flexible and scalable as possible, and must accommodate the smooth removal of compromised

WAVE devices from the system. Additionally, as mentioned above, the privacy of privately owned and

operated vehicles, and potentially other personal devices within the WAVE system, must be respected as far

as technically and administratively feasible.

This amendment addresses multiple needs to enhance and extend IEEE Std 1609.2-2016:

 Since the publication of Standard 1609.2-2016, a number of errors, omissions and ambiguities have

been discovered, which this amendment corrects.

 Industry stakeholders have requested additional functionality, in particular better support for

compact expressions of ranges of Service Specific Permissions (SSPs).

 Test vectors are provided to enable implementers to gain confidence in correctness of their

implementation before running interoperability tests.

 Additional informative material is provided to assist implementers of the standard and users of the

security services in understanding the intended implementation and use.

Copyright © 20XX IEEE. All rights reserved.

viii

Contents

1. Overview .. 1
1.1 Scope ... 1
1.2 Purpose .. 1
1.3 Document organization .. 2
1.4 Document conventions .. 2
1.5 Testing considerations ... 2

2. Normative references .. 3

3. Definitions, abbreviations, and acronyms .. 4
3.1 Definitions ... 4
3.2 Abbreviations and acronyms ... 9

4. General description ..11
4.1 WAVE protocol stack overview ...11
4.2 Secure data service (SDS) ..14
4.3 Security services management entity (SSME) ..18
4.4 Behavior of SDEEs ...19

5. Cryptographic operations and validity...20
5.1 Certificate validity ..20
5.2 Signed SPDU validity ...33
5.3 Cryptographic operations ..45

6. Data structures ...50
6.1 Presentation and encoding ..50
6.2 Basic types ..50
6.3 Secured protocol data units (SPDUs) ...51
6.4 Certificates and other security management data structures ...66

7. Certificate revocation lists (CRLs) and the CRL Verification Entity ..82
7.1 General ...82
7.2 CRL Verification Entity specification ..82
7.3 Data structures ..83
7.4 CRL: 1609.2 Security envelope ..88

8. Peer-to-peer certificate distribution (P2PCD)..92
8.1 General ...92
8.2 P2PCD operations ...93
8.3 P2PCD Entity specification ..105
8.4 Data structures ..106

9. Service primitives and functions ...108
9.1 General comments and conventions ...108
9.2 Identifiers used in the interface specification ...110
9.3 Sec SAP ..115
9.4 SSME SAP ...146
9.5 SSME-Sec SAP ..166

Annex A (normative) Protocol Implementation Conformance Statement (PICS) proforma171
A.1 Instructions for completing the PICS proforma ...171
A.2 PICS proforma—IEEE Std 1609.2 ..173

Copyright © 20XX IEEE. All rights reserved.

ix

Annex B (normative) ASN.1 modules...184
B.1 General ...184
B.2 1609.2 security services ...184
B.3 Certificate revocation list (CRL) ..194
B.4 Peer-to-peer certificate distribution (P2PCD) ..198

Annex C (informative) Specifying the use of IEEE Std 1609.2 by SDEEs ...200
C.1 General ...200
C.2 IEEE 1609.2 security profiles ..200
C.3 IEEE 1609.2 security profile proforma ..211
C.4 Service Specific Permissions (SSP) ...213
C.5 Assurance level ..214
C.6 Recommendations on certificates ..214
C.7 Source of encryption keys ..215

Annex D (informative) Examples and use cases ...217
D.1 Guidance for SDEE specifiers and implementers ..217
D.2 Processing CRLs ..218
D.3 Constructing a certificate chain ...219
D.4 Peer-to-peer certificate distribution ...224
D.5 Example data structures ...231
D.6 Cryptographic Test Vectors ...236

Annex E (informative) Deployment considerations ..262

Annex F (informative) Bibliography ...264

Copyright © 20XX IEEE. All rights reserved.

1

“IEEE Standard for Wireless Access in
Vehicular Environments—Security
Services for Applications and
Management Messages” –
consolidated draft of IEEE 1609.2-2016
with amendments specified in 1609.2a

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, security, health,

or environmental protection, or ensure against interference with or from other devices or networks.

Implementers of IEEE Standards documents are responsible for determining and complying with all

appropriate safety, security, environmental, health, and interference protection practices and all

applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers.

These notices and disclaimers appear in all publications containing this document and may

be found under the heading “Important Notice” or “Important Notices and Disclaimers

Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at

http://standards.ieee.org/IPR/disclaimers.html.

THIS IS NOT AN OFFICIAL IEEE DOCUMENT: THIS IS THE TEXT OF IEEE STD 1609.2-2016,

AS AMENDED BY THE CURRENT DRAFT OF IEEE P1609.2A. IT SHOULD NOT BE

REFERENCED OR USED DIRECTLY; REFERENCES OR USE SHOULD BE MADE ONLY OF

1609.2-2016 AND 1609.2A. THIS CONSOLIDATED DOCUMENT IS PROVIDED SOLELY AS A

CONVENIENCE TO READERS AND REVIEWERS OF 1609.2A.

1. Overview

1.1 Scope

This standard defines secure message formats and processing for use by Wireless Access in Vehicular

Environments (WAVE) devices, including methods to secure WAVE management messages and methods to

secure application messages. It also describes administrative functions necessary to support the core security

functions.

1.2 Purpose

The safety-critical nature of many Wireless Access in Vehicular Environments (WAVE) applications makes

it vital that services be specified that can be used to protect messages from attacks such as eavesdropping,

http://standards.ieee.org/IPR/disclaimers.html

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

2

spoofing, alteration, and replay. Additionally, the fact that the wireless technology will be deployed in

communication devices in personal vehicles as well as other portable devices, whose owners have an

expectation of privacy, means that in as much as possible the security services must be designed to respect

privacy and not leak personal, identifying, or linkable information to unauthorized parties. This standard

describes security services for WAVE management messages and application messages designed to meet

these goals.

1.3 Document organization

Clause 1 provides an overview of the document. Clause 2 contains the normative references. Clause 3

contains definitions and abbreviations. Clause 4 provides a general description of WAVE Security Services

and their use. Clause 5 specifies validity of signed secured protocol data units (SPDUs), correctness of

encrypted protocol data units (PDUs), and core cryptographic operations. Clause 6 specifies the encoding

and structure of messages generated and consumed by WAVE Security Services. Clause 7 provides a

specification of certificate revocation lists, which are a mechanism used to distribute information about

certificates that should not be trusted. Clause 8 specifies mechanisms for peer-to-peer certificate distribution.

Clause 9 defines the primitives used to communicate between WAVE Security Services and other functional

entities.

Annex A provides a Protocol Implementation Conformance Statement (PICS) proforma. Annex B provides

ASN.1 modules. Annex C provides a description of the IEEE 1609.2 security profile and a proforma that

may be used by developers of applications (or other entities that invoke WAVE Security Services) to specify

options for how those applications are to interact with WAVE Security Services. Annex D provides examples,

including examples of encoded datagrams and sample process flows, from the point of view of an entity

invoking WAVE Security Services rather than from the point of view of WAVE Security Services. Annex E

describes other considerations that impact the deployment of a secure communications system using the

techniques of this standard. Annex F provides an informative bibliography.

1.4 Document conventions

Unless otherwise stated, conventions follow those in IEEE Std 802.11™ [B11]1, including conventions for

the ordering of information elements within data streams.

Numbers are decimal unless otherwise noted. Numbers preceded by 0x are to be read as hexadecimal, so that

0xFF is equivalent to “FF hexadecimal”. Occasionally, this standard includes representations of octet strings

in hexadecimal form; these strings are indicated as hexadecimal on a case-by-case basis.

Figures are used for illustration and are informative, unless otherwise noted.

1.5 Testing considerations

The services defined in this standard, with the exception of the peer-to-peer certificate distribution service

specified in Clause 8, operate over internal interfaces that are not directly observable in normal operations.

Conformance claims made about an implementation of this standard can only be fully tested by direct access

to the specific interfaces of that implementation. This standard does not provide a normative interface

specification, so an implementation of a test process is not guaranteed a standard interface that may be used

to access the implementation under test.

1 The numbers in brackets correspond to those of the bibliography in Annex F.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

3

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must

be understood and used, so each referenced document is cited in text and its relationship to this document is

explained). For dated references, only the edition cited applies. For undated references, the latest edition of

the referenced document (including any amendments or corrigenda) applies.

Federal Information Processing Standard (FIPS) 180-4, Secure Hash Standard (SHS), Aug. 2015. Available

from http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf.2

Federal Information Processing Standard (FIPS) 186-4, Digital Signature Standard (DSS), July 2013.

Available from http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

Federal Information Processing Standard (FIPS) 197, Advanced Encryption Standard (AES), Nov. 2001.

Available from http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

IEEE Std 1363™-2000, IEEE Standard Specifications for Public Key Cryptography.3, 4

IEEE Std 1363a™-2004, IEEE Standard Specifications for Public Key Cryptography—Amendment 1:

Additional Techniques.

IEEE Std 1609.0™, IEEE Guide for Wireless Access in Vehicular Environments (WAVE)—Architecture.

IEEE Std 1609.3™, Standard for Wireless Access in Vehicular Environments (WAVE)—Networking Services.

IEEE Std 1609.12™, Standard for Wireless Access in Vehicular Environments (WAVE)—Identifier

Allocations.

IETF Request for Comments: 3629, UTF-8, A Transformation Format of ISO 10646.5

IETF Request for Comments: 5639, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and

Curve Generation.

ITU-T Recommendation X.680 (11/2008), Information Technology—Abstract Syntax Notation One

(ASN.1): Specification of Basic Notation, 2008. Available from http://handle.itu.int/11.1002/1000/9604.

ITU-T Recommendation X.696 (08/2014), Information Technology—Specification of Octet Encoding Rules

(OER), 2014. Available from http://www.itu.int/rec/T-REC-X.696-201408-I.

NIMA Technical Report TR8350.2, “Department of Defense World Geodetic System 1984, Its Definition

and Relationships with Local Geodetic Systems.” Available from http://earth-info.nga.mil/GandG/

publications/tr8350.2/tr8350_2.html

NIST Special Publication SP 800-38C, Recommendation for Block Cipher Modes of Operation: The CCM

Mode for Authentication and Confidentiality.6

Standards for Efficient Cryptography Group, “SEC 1: Elliptic Curve Cryptography,” Version 2.0, May 21, 2009.7

2 FIPS publications are available from the National Technical Information Service (NTIS), U.S. Dept. of Commerce, 5285 Port Royal
Rd., Springfield, VA 22161 (http://www.ntis.org/).
3 IEEE publications are available from The Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08855-

1331, USA (http://standards.ieee.org/).
4 The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics Engineers, Inc.
5 IETF publications are available from http://www.ietf.org.
6 NIST special publications are available from http://csrc.nist.gov/publications/nistpubs/.
7 SECG publications are available from http://www.secg.org.

http://standards.ieee.org/

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

4

Standards for Efficient Cryptography Group, “SEC 4: Elliptic Curve Qu-Vanstone Implicit Certificate

Scheme (ECQV),” Version 1.0, Jan. 24, 2013.

United Nations Statistics Division, “Composition of Macro Geographical (Continental) Regions,

Geographical Sub-Regions, and Selected Economic and Other Groupings,” [referred to as “UN Region

Codes”] revision of 31 Oct. 2013. Available from http://unstats.un.org/unsd/methods/m49/m49regin.htm.

United States Census, 2010 FIPS Codes for Counties and County Equivalent Entities. Available from

http://www.census.gov/geo/reference/codes/cou.html.

3. Definitions, abbreviations, and acronyms

3.1 Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards Dictionary

Online should be consulted for terms not defined in this clause.8

advanced encryption standard (AES): Federal Information Processing Standard (FIPS) 197, specifying a

symmetric block cipher; also, the block cipher specified in that standard.

application: A higher layer entity that may make use of WAVE communication facilities.

application permissions: The actions a certificate holder is allowed to take as stated in their certificate.

Expressed in this standard using Provider Service Identifiers (PSIDs).

associated certificate (of a private key): The certificate used to verify signatures generated by that private

key.

associated public key (of a certificate): The public key that is used to verify signatures associated with a

certificate.

asymmetric cryptographic algorithm: A cryptographic algorithm that uses two related keys, a public key

and a private key, such that the public key is derived from the private key but, given only the public key, it

is computationally infeasible to derive the private key.

authenticated channel: A logical communications channel such that the receiver has assurance that the

sender is who they claim to be, and that modifications to the data can be detected. A channel may be

authenticated by applying cryptographic mechanisms to the channel itself, or by checking the transmitted

protocol data units (PDUs) by some out-of-band mechanism.

authentication: A cryptographic service that provides assurance that the sender of a protocol data unit (PDU)

is who they claim to be.

authorization: A cryptographic service that provides assurance that the sender of a protocol data unit (PDU)

is entitled to certain permissions.

authorization certificate: A certificate that is used to validate application protocol data units (PDUs) other

than certificate requests.

block cipher: A symmetric encryption algorithm that processes data in blocks, typically of 8 or 16 octets.

certificate: See digital certificate.

certificate authority (CA) certificate: A certificate that is used to verify other certificates.

certificate authority (CA): An entity that issues certificates to entities that are entitled to them.

8IEEE Standards Dictionary Online subscription is available at:
http://www.ieee.org/portal/innovate/products/standard/standards_dictionary.html.

http://www.ieee.org/portal/innovate/products/standard/standards_dictionary.html

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

5

certificate chain: An ordered set of certificates such that each certificate (except for the top) was issued by

the certificate above it in the list. See also: complete certificate chain; partial certificate chain.

certificate holder: The entity authorized to use a particular digital certificate to establish trust. The certificate

holder can carry out operations using the private key corresponding to the certficate’s public key. A certificate

holder’s certificate is referred to as a locally held certificate.

certificate management information: Information that allows the secure data service to determine the

trustworthiness of certificates and received data.

certificate revocation list (CRL) distribution center: An entity that stores and distributes certificate

revocation lists (CRLs).

certificate revocation list (CRL) series (CRL series): An integer used to assign different certificates issued

by the same certificate authority (CA) to distinct sets, such that the certificates in different sets appear on

different revocation lists if revoked.

certificate revocation list (CRL): A list identifying certificates that have been revoked. See: revocation.

certificate revocation list (CRL) signer: An entity authorized to sign certificate revocation lists (CRLs).

certificate signing request (CSR): A protocol data unit (PDU) sent from an entity to a certificate authority

(CA), requesting that the CA issues a certificate on behalf of the entity.

chains to: A digital certificate A chains to another certificate B if B is above A in the certificate chain (q.v.)

from A to the root.

complete certificate chain: A certificate chain in which the top certificate is a root certificate and the bottom

certificate is an end-entity certificate.

confidentiality: A cryptographic service that provides assurance that only the intended recipients of a

protocol data unit (PDU) can read it.

consistency conditions: Criteria for validity of a signed protocol data unit (PDU) that depend only on the

contents of the signed secured protocol data unit (SPDU) and not on the state of the receiver.

counter mode with cipher block chaining message authentication code (CCM): A mode of operation of

a block cipher where the data is encrypted with a keystream, which in turn is generated by encrypting an

incrementing counter, and in turn authenticated with a message authentication code calculated using cipher

block chaining mode.

critical information field: An information field necessary to establish the validity of a signed secured

protocol data unit (SPDU).

cryptographic type (of a certificate): How a certificate transfers information about its associated public key

(q.v.). Cryptographic types of certificate are: implicit certificate; explicit certificate.

cryptographic verification: The process of determining whether a signature on a signed secured protocol

data unit (SPDU) is consistent with the SPDU and the private key.

cryptographically secure hash function: A function that maps an arbitrary-length input into a fixed-length

output (the hash value) such that (a) it is computationally infeasible to find an input that maps to a specific

hash value and (b) it is computationally infeasible to find two inputs that map to the same hash value. All

hash functions used in this document are cryptographically secure hash functions.

Cryptomaterial Handle: A reference to a private key and the associated public key or certificate, used to

indicate to the secure data service that the referenced key should be used in a particular operation.

cryptomaterial: A private key, a public key, or a certificate.

data plane: A component of the abstract architecture containing entities that exchange user data.

decode: To convert an array of octets into a data structure. Contrast: decrypt, encode.

decrypt: To convert unreadable, encrypted data to readable, decrypted data using a decryption algorithm and

a key. Contrast: decode, encrypt.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

6

decryption algorithm: An algorithm that takes as input ciphertext and a key and (if the correct key is

provided) produces the original plaintext.

delta certificate revocation list (delta CRL): A certificate revocation list that carries information only about

certificates that were revoked within a certain time period. Contrast: full certificate revocation list.

digital certificate: A digitally signed document binding a public key to an identity and/or a set of

permissions.

direct hashing: Creating a hash of particular data by passing that data through a hash function without

including any additional data or processing.

dubious certificate: A certificate for which the most recent certificate revocation list (CRL) is overdue, i.e.,

it is scheduled to be issued but has not yet been received.

elliptic curve cryptography (ECC): A form of public-key cryptography based on the problem of finding

discrete logarithms in a group defined over elliptic curves.

Elliptic Curve Digital Signature Algorithm (ECDSA): A digital signature mechanism based on the elliptic

curve discrete logarithm problem and standardized in Federal Information Processing Standard (FIPS) 186-

4.

Elliptic Curve Integrated Encryption Scheme (ECIES): A public-key encryption mechanism based on the

elliptic curve discrete logarithm problem.

encode: To convert a data structure into an array of octets. Contrast: decode, encrypt.

encrypt: To convert readable data to unreadable, encrypted data using an encryption algorithm and a key.

Contrast: decrypt, encode.

encryption algorithm: An algorithm that takes as input plaintext and a key and produces ciphertext.

encryption certificate: A certificate that contains an encryption key.

end-entity: An entity that is requesting certificates or signing Protocol Data Units. Contrast: certificate

authority. Note that an entity may act as an end-entity in one context and as a Certificate Authority in another

context.

end-entity certificate: A certificate used to validate application PDUs or certificate requests.

enrollment certificate: A certificate used to validate a certificate request (CSR). Contrast: authorization

certificate, certificate authority (CA) certificate.

explicit certificate: A certificate that contains a public key and the certificate authority’s signature.

full certificate revocation list (full CRL): A certificate revocation list that carries information about

certificates that were revoked and have not expired, regardless of when the revocation took place. Contrast:

delta certificate revocation list.

global consistency conditions: Consistency conditions (q.v.) which apply to all protocol data units (PDUs)

regardless of the application area in which they are used.

hash function: See: cryptographically secure hash function.

hash ID-based revocation: Revocation (q.v.) which identifies certificates to be revoked via their

cryptographic hash.

hash value: The output of a hash function.

IEEE 1609.2 security profile: A means for specifying options and parameters that are provided to the 1609.2

security services by a particular consumer of those services. May be used as part of the specification of a

secure data exchange entity (q.v.).

implicit certificate: A digital certificate that allows the associated public key to be reconstructed from a

reconstruction value and the certificate authority’s public key rather than directly providing the associated

public key.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

7

inherited permissions: Permissions within a subordinate certificate that are communicated by reference to

the issuing certificate, rather than stated explicitly within the subordinate certificate.

integrity: A cryptographic service that provides assurance that any changes to a protocol data unit (PDU)

made after it is validly created will be detected.

issuing certificate: The certificate that issues a subordinate certificate.

length of certificate chain: (In a certificate chain from any CA certificate to a final certificate, with each

certificate in the chain issuing the one after it): the number of certificates in the chain, except for the first

one; in other words, the number of certificates in the chain, minus 1.

linkage-based revocation: Revocation (q.v.) which identifies certificates to be revoked via a linkage value

(q.v.) included in the certificate.

linkage value: A value included in a certificate that enables that certificate to be revoked via linkage-based

revocation (q.v.).

locally held certificate: A certificate on a device such that WAVE Security Services on that device may

generate a signature on a secured protocol data unit (SPDU) which verifies correctly with that certificate.

management plane: A component of the abstract architecture containing functions that manage the entities

in the data plane.

misbehavior: Behavior that results in SDEEs receiving information that could cause them to take incorrect

actions.

misbehavior authority: A management component on the network with responsibility for determining

which SDEEs are responsible for misbehavior.

misbehavior reporting: The activity of providing information to some authority, known as the misbehavior

authority, about misbehavior within a particular application area. The subsequent actions taken by the

misbehavior authority may be application area specific.

network byte order: An ordering of the bytes of an integer such that the byte transmitted first is the byte

containing the most significant bit, and the most significant bit is first in that byte.

non-repudiation (of origin): A cryptographic service whereby the origin of a message can be demonstrated

to a third party, preventing the sender from denying that they produced the message.

off-cycle certificate revocation list (CRL): A certificate revocation list (CRL) that is issued before the “next

CRL” time indicated in the previous CRL in the CRL series.

partial certificate chain: A certificate chain that is not a complete certificate chain, i.e., the top certificate is

not a root certificate or the bottom certificate is not an end-entity certificate.

peer-to-peer certificate distribution: A mechanism for allowing WAVE Security Services instances to

learn certificates from peer instances.

plaintext: Unencrypted data.

properly formed certificate: A certificate that can be parsed correctly according to the data structures and

encoding defined in this standard.

Provider Service Identifier (PSID): An identifier of an application area. (See IEEE Std 1609.12).

Provider Service Identifier (PSID) derived from context: A Provider Service Identifier (PSID) associated

with a protocol data unit (PDU) received by a secure data exchange entity (SDEE), where the SDEE does

not obtain the PSID from the PDU itself, but by some other means.

pseudonym certificate: An authorization certificate (q.v.) that indicates its holder’s permissions but not its

holder’s identity.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

8

pseudonymity: A property wherein an entity’s permanent or long-lived identities, and its long-term patterns

of behavior, cannot be deduced from its network traffic and are only observable by appropriately authorized

parties.

public-key digital signature: A cryptographically secure checksum that is generated using a private key and

verified using a public key.

reconstruction value: A value in an implicit certificate that allows the associated public key to be recovered.

relevance conditions: Criteria for validity of a signed secured protocol data unit (SPDU) that depend on the

local state of the receiver.

replay attack: An attack in which an attacker retransmits, possibly with a delay, data that was originally

validly transmitted.

revocation: The publication by a relevant authority of the information that a particular certificate is no longer

to be trusted.

root certificate: A self-signed certificate that can be used as a trust anchor to verify other certificates.

secure data service: A subset of Wireless Access in Vehicular Environments (WAVE) Security Services

providing services that allow secure data service entities to request communications security services to be

applied to protocol data units (PDUs).

secure data exchange entity (SDEE): An entity that uses IEEE 1609.2 services to secure any

communications.

secure data exchange entity (SDEE)-specific consistency checks: Consistency checks (q.v.) which are

specific to a SDEE (q.v.).

secure data exchange entity (SDEE)-verified relevance checks: Relevance checks (q.v.) which cannot be

verified within the security services.

secured protocol data unit (SPDU): A protocol data unit which has been processed by WAVE Security

Services before transmission.

security envelope: The additional data added to a protocol data unit by the security services when

transforming it into a secured protocol data unit.

security services management entity (SSME): The management entity responsible for managing the

certificate management information on a WAVE device.

security management message: A protocol data unit (PDU) used to manage certificates or information about

certificates.

security management: Operations that support acquiring or establishing the validity of 1609.2 certificates.

security profile policy: For an IEEE 1609.2 security profile (q.v.), a set of entries in the security profile for

which values used by different implementations should be coordinated and for which values may change

over time.

security service-verified relevance conditions: Relevance conditions (q.v.) that can be tested within the

security services.

self-signed certificate: A certificate whose signature can be verified with the public key in the certificate.

Service Specific Permissions (SSP): A field that indicates the permissions of a particular certificate holder

with respect to a particular application area.

signature: See: public key digital signature.

subordinate certificate: The certificate that was issued by an issuing certificate.

symmetric cryptographic algorithm: A cryptographic algorithm that uses a single key. Knowledge of a

symmetric encryption key allows both encryption and decryption. Knowledge of a symmetric authentication

key allows generation and verification of message authentication codes.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

9

Symmetric Cryptomaterial Handle: A reference to a symmetric key, used to indicate to the secure data

service that the referenced key should be used in a particular operation.

symmetric key: The key for a symmetric cryptographic algorithm (q.v.).

Transport Layer Security (TLS): An Internet Engineering Task Force (IETF) protocol, specified in Request

for Comments (RFC) 5246 [B13], providing for secure communications over Transmission Control

Protocol/Internet Protocol (TCP/IP).

trigger secure data exchange entity (trigger SDEE): A secure data exchange entity that sends a secured

protocol data unit (SPDU) that triggers peer-to-peer certificate distribution.

trigger secured protocol data unit (trigger SPDU): A secured protocol data unit (SPDU) that triggers peer-

to-peer certificate distribution.

trust anchor: A certificate whose validity does not depend on the validity of other certificates.

valid certificate: A certificate that is correctly formed, that has not been revoked or expired, and for which

a certificate chain to a trust anchor can be constructed.

verification type (of a signed secured protocol data unit (SPDU)): An indication of whether a signed SPDU

is to be verified with a public key associated with a certificate, or a public key included in the protocol data

unit (PDU) payload. Takes the values certificate or self-signed.

whole-certificate hash algorithm: the algorithm used to calculate the hash of a certificate for purposes of

identifying that certificate.

Wireless Access in Vehicular Environments (WAVE) device: A device that is compliant to IEEE Std

1609.3, IEEE Std 1609.4™, and IEEE Std 802.11 communicating outside the context of a basic service set.

Wireless Access in Vehicular Environments (WAVE) Short Message (WSM): A packet consisting of a

WAVE Short MessagePprotocol (WSMP) header and WSM data.

Wireless Access in Vehicular Environments (WAVE) Short Message Protocol (WSMP): A protocol

specified in IEEE Std 1609.3 that minimizes communications overhead.

3.2 Abbreviations and acronyms

AES Advanced Encryption Standard

APDU application protocol data unit

ASN.1 Abstract Syntax Notation 1

CA certificate authority

CCM counter mode with cipher block chaining message authentication code

CMH Cryptomaterial Handle

COER Canonical Octet Encoding Rules

CRACA Certificate Revocation Authorizing Certificate Authority

CRL certificate revocation list

CSR certificate signing request

DSRC dedicated short range communications

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

10

ECC elliptic curve cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

EDCA enhanced distributed channel access

FIPS Federal Information Processing Standard

GNSS Global Navigation Satellite System

GPS Global Positioning System

IETF Internet Engineering Task Force

IP Internet Protocol

IPv6 Internet Protocol version 6

ITS intelligent transportation systems

MAC medium access control, or message authentication code

NIST National Institute for Standards and Technology

OBU on-board unit

P2PCD peer-to-peer certificate distribution

PDU protocol data unit

PHY physical layer

PSID Provider Service Identifier

RSU roadside unit

RFC Request for Comments

SAE Society of Automotive Engineers

SAP Service Access Point

SCMH Symmetric Cryptomaterial Handle

SDEE secure data exchange entity

SDS secure data service

SSME security services management entity

SP special publication

SPDU secured protocol data unit

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

11

SSP Service Specific Permissions

TLS Transport Layer Security

TAI International Atomic Time

TTP trusted third party

UTC Coordinated Universal Time

UTF Unicode Transformation Format

V2I vehicle-to-infrastructure

V2V vehicle-to-vehicle

WAVE Wireless Access in Vehicular Environments

WGS World Geodetic System

WME WAVE Management Entity

WSM WAVE Short Message

WSMP WAVE Short Message Protocol

4. General description

4.1 WAVE protocol stack overview

Wireless Access in Vehicular Environments (WAVE) provides a communication protocol stack optimized

for the vehicular environment, employing both customized and general-purpose elements as shown in Figure

1. WAVE supports both IP- and non–IP-based data transfers, although individual devices might support only

one networking stack. Non–IP-based data transfers are supported through the WAVE Short Message Protocol

(WSMP) specified in IEEE Std 1609.3. Channel coordination is a collection of extensions to the IEEE 802.11

medium access control (MAC) specified in IEEE Std 1609.4 [B12]. The WAVE Management Entity (WME)

and corresponding network services are specified in IEEE Std 1609.3. WAVE Security Services are specified

in this standard. IEEE Std 1609.0 provides a description of the WAVE system architecture and operations.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

12

UDP / TCP

LLC

PHY

WAVE MAC

(including channel coordination)

IPv6

WSMP

Security

Services

Layer-

specific

manage-

ment

entities

Data PlaneManagement Plane

Figure 1 —WAVE reference model

This standard specifies a collection of WAVE Security Services available to processes running on platforms

including, but not limited to, WAVE devices. The WAVE Security Services are shown in Figure 2 and consist

of WAVE Internal Security Services and WAVE Higher Layer Security Services.

WAVE Internal Security Services are:

 Secure data service (SDS): Transforming unsecured protocol data units (PDUs) into secured protocol

data units (SPDUs) to be transferred between entities, and processing SPDUs on reception, including

transforming SPDUs into unsecured PDUs. The additional data added to a PDU when it is

transformed into a SPDU is referred to as the security envelope. An entity that uses the secure data

service is referred to as a secure data exchange entity (SDEE).

 Security management: Managing information about certificates as specified in 4.3.

WAVE Higher Layer Security Services are:

 Certificate revocation list (CRL) verification entity (CRLVE): Validates incoming CRLs and passes

the related revocation information to the SSME for storage as specified in 5.1.3 and Clause 7.

 Peer-to-peer certificate distribution (P2PCD) entity (P2PCDE): Enables peer-to-peer certificate

distribution as specified in Clause 8.

The services and entities within the WAVE Security Services are shown in Figure 2, which also shows

Service Access Points (SAPs) that support communications between WAVE Security Services entities and

other entities. This standard specifies information flows to support security processing via primitives defined

at these SAPs. The Sec-SAP is used by higher layer entities and by the WME. Additionally, the certain SDS

operations involve invoking certain primitives across the SSME-SAP as specified in 4.3.

Information elements passed across the SAPs in this standard are assumed to be secure and trustworthy. This

standard does not provide mechanisms to ensure the trustworthiness of these information elements.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

13

S
ta

ti
o

n
 S

e
c
u

ri
ty

 M
a

n
a

g
e

m
e

n
t

E
n

ti
ty

UDP / TCP

LLC

PHY

WAVE MAC

(including channel

coordination)

IPv6

WSMP

Data Plane

Management

Plane

S
e

c
u
re

 D
a

ta
 S

e
rv

ic
e

W
A

V
E

M
a

n
a

g
e

m
e

n
t

E
n

ti
ty

 (
W

M
E

)

L
o

w
e

r
L

a
y
e

r

M
a

n
a

g
e

m
e

n
t

S
S

M
E

-
S

e
c
-S

A
P

SSME-
SAP

W
A

V
E

 I
n

te
rn

a
l

S
e

c
u
ri

ty
 S

e
rv

ic
e

s
Sec-SAP

S
e
c
-S

A
P

Peer-to-Peer Certificate

Distribution Entity

Certificate Revocation List

(CRL) Verification Entity
W

A
V

E

S
e

c
u
ri

ty
 S

e
rv

ic
e

s

W
A

V
E

 H
ig

h
e

r

L
a

y
e

r
S

e
c
u

ri
ty

S
e

rv
ic

e
s

Figure 2 —WAVE protocol stack showing detail of WAVE Security Services

Figure 3 shows the general model for security processing using the SDS. The SDS is invoked by a secure

data exchange entity (SDEE) with a request to process data; the resulting processed data is returned to the

invoking SDEE. A secure data exchange involves two SDEEs, one sending and one receiving. Transmission

and reception of the SPDU are not specified in this standard.

The sending SDEE invokes the secure data service to perform sender-side security processing. The result of

the processing is a SPDU which is returned to the sending entity. The sending SDEE invokes the secure data

service at least once, and possibly multiple times, prior to transmission of a SPDU.

The receiving SDEE invokes the secure data service to perform security processing on the contents of a

received SPDU. The results of the processing, which may include a SPDU and may include additional

information about the SPDU, are returned to the receiving SDEE. Complete processing of a received SPDU

might require multiple invocations of the SDS.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

14

Sending SDEE
Secure Data

Service

Sender security
processing request(s)

Sender security
processing result(s)

Data transfer

Secure Data

Service
Receiving SDEE

Receiver security
processing result(s)

Receiver security
processing request(s)

Figure 3 —Process flow for use of 1609.2 secure data service

At a minimum, an implementation of WAVE Security Services shall support at least one of the following:

 Generate signed SPDU (see 4.2.2.2.3)

 Verify signed SPDU (see 4.2.2.3.2)

 Generate encrypted SPDU (see 4.2.2.2.4)

 Decrypt encrypted SPDU (see 4.2.2.3.3)

 The CRL Verification Entity (see 7)

 The Peer-to-Peer Certificate Distribution Entity (P2PCDE) (see 8.3)

4.2 Secure data service (SDS)

4.2.1 Secured protocol data units (SPDUs)

The SDS operations create or process SPDUs. SPDUs are the datagrams that are exchanged between

instances of SDEEs that make use of the security services. SPDUs are used for two purposes:

a) To provide cryptographic protection of the contents

b) To provide security management information to be exchanged to allow the correct processing of

other SPDUs

SPDUs may be of type unsecured, signed, or encrypted. A SPDU may contain another SPDU of the same or

different type.

4.2.2 Secure data service

4.2.2.1 SDEE identifier

If an implementation of the secure data exchange services supports being invoked by multiple SDEEs, the

SDS distinguishes between different SDEEs that invoke them for purposes of replay detection when verifying

signed messages (see 5.2.4.2.6), and peer-to-peer certificate distribution (see Clause 8). The mechanism by

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

15

which this is supported is implementation specific. In the primitives defined in Clause 9, SDEEs are

distinguished by a SDEE identifier value which is distinct for distinct SDEEs.

4.2.2.2 Generate SPDUs

4.2.2.2.1 Types of SPDUs

This standard defines the following types of SPDUs: unsecured, signed, and encrypted.

4.2.2.2.2 Unsecured SPDUs

An unsecured SPDU is an encoded Ieee1609Dot2Data indicating content of type unsecuredData as

defined in Clause 6. The SDS interface specified in this standard does not provide a primitive to create an

unsecured SPDU as this can be implemented trivially.

4.2.2.2.3 Signed SPDUs

The SDS may provide the service of generating a signed SPDU. This service provides:

a) Authenticity—assurance that the sender is who they claim to be

b) Authorization—assurance that the sender is entitled to the privileges they request

c) Integrity—assurance that any changes to the SPDU after it is signed can be detected

d) Non-repudiation (of origin)—the ability to demonstrate authenticity, authorization, and integrity to a

third party

The SDS is requested to generate a signed SPDU via Sec-SignedData.request. The SDS returns the result of

the request to the requesting SDEE via Sec-SignedData.confirm. The result shall be one of the following:

 On success, an octet string containing an encoded Ieee1609Dot2Data as defined in Clause 6

containing a signed SPDU that is valid by the criteria specified in 5.2

 On failure, because it was not possible for the SDS to generate a valid signed SPDU, an indication

of the reason for failure

When generating a signed SPDU, the SDS interacts with the SSME to carry out activities to support peer-to-

peer certificate distribution (P2PCD) as defined in Clause 8, if the invoking SDEE so requests.

4.2.2.2.4 Encrypted SPDUs

The SDS may provide the service of generating an encrypted SPDU. This provides:

 Confidentiality—assurance that only the intended recipient(s) can read the contents of the SPDU

The SDS is requested to encrypt data via Sec-EncryptedData.request. The caller provides the SDS with a

single input PDU and one or more encryption keys, which may be public or symmetric. The PDU is encrypted

using the encryption keys in such a way that the holder or holders of a decryption key corresponding to any

of the encryption keys can decrypt the PDU as specified in 5.3.4. Each of the encryption keys used is referred

to as a recipient key, and the holder of the corresponding decryption key is referred to as a recipient.

The SDS returns the result of the request to the requesting SDEE via Sec-EncryptedData.confirm. The result

shall be one of the following:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

16

 On success, an octet string containing an encoding of an Ieee1609Dot2Data containing an encrypted

PDU that is valid by the criteria specified in 5.3.4

 On failure, an indication of the reason for failure

4.2.2.2.5 SPDU with multiple layers of cryptographic protection

To create a SPDU with multiple layers of cryptographic protection (signed and then encrypted, for example),

a SDEE invokes the SDS multiple times, passing the output of one invocation of the SDS as the payload to

the next invocation. The SPDU produced by each step contains the SPDU from the previous step (or the

original PDU) as the payload and can be processed by the security services (if a SPDU) or by a peer SDEE

(if the original PDU).

4.2.2.3 Processing received SPDUs

4.2.2.3.1 Preprocessing

The SDS may provide the service of preprocessing a received SPDU. This enables peer SDSs to exchange

management information and to extract information that can be used by the invoking SDEE to decide whether

to process the SPDU further.

The SDS shall provide this service if it supports peer-to-peer certificate distribution (P2PCD) as defined in

Clause 8.

The SDS shall provide this service if it allows a signer identifier to be of type digest as defined in 6.3.25.

Otherwise, provision of this service is optional.

The SDS is requested to preprocess a received SPDU via Sec-SecureDataPreprocessing.request. The SDS

returns the result of the request to the requesting SDEE via Sec-SecureDataPreprocessing.confirm. The result

is:

 The type of the SPDU

 If the SPDU was of type signed:

 The Service Specific Permissions of the signer as defined in 5.2.3.3.3

 The geographic validity region of the signer’s certificate as defined in 6.4.17

 The assurance level of the signer’s certificate as defined in 6.4.27

 The earliest Next CRL time of any certificate in the chain as defined in 5.1.3.6

When providing this service, the SDS extracts security management information and passes it to the SSME

to support P2PCD and digest-form SignerIdentifier structures.

4.2.2.3.2 Verifying signed SPDUs

The SDS may provide the service of verifying a signed SPDU.

The SDS is requested to verify a signed SPDU via Sec-SignedDataVerification.request. The SDS returns the

result of the request to the requesting SDEE via Sec-SignedDataVerification.confirm. The result shall be a

correct indication of whether a signed SPDU is valid, meaning that it meets the three validity conditions

specified in 5.2.1.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

17

4.2.2.3.3 Decrypting encrypted SPDUs

The SDS may provide the service of decrypting an encrypted SPDU.

The SDS is requested to decrypt an encrypted SPDU via Sec-EncryptedDataDecryption.request. The SDS

returns the result of the request to the requesting SDEE via Sec-EncryptedDataDecryption.confirm. The

result shall be:

 On success, a SPDU that is the correct decryption of the ciphertext within the encrypted SPDU.

 On failure, an indication of the reason for failure. A decryption attempt might fail because the data

was not validly encrypted, because valid encrypted data was not received correctly, or because the

relevant decryption key is not known to the SDEE.

4.2.3 Cryptomaterial

Cryptographic operations for SDS make use of data of the following types:

 Symmetric keys.

 Private keys and associated certificates. The associated certificate for a private key is the certificate

for which the associated public key verifies signatures generated with that private key and which was

valid at the time of signing with the private key.

 Digital certificates held by peer entities, for which no private key is stored by the SDS.

Symmetric keys, and private keys and associated certificates, are referred to as cryptomaterial in this

standard. Cryptomaterial is used by the SDS in the following operations:

 Generate signed SPDUs (private keys and certificates only)

 Decrypt encrypted PDUs (private keys or symmetric keys)

The interfaces to the SDS in this standard do not pass secret or private keys, but represent them via the

Cryptomaterial Handle (CMH). The CMH is an abstraction of private/secret key storage used in the definition

of the interfaces and is defined in 9.2.2.

4.2.4 Peer-to-peer certificate distribution

The SDS may also provide functionality in support of peer-to-peer certificate distribution operations. A SDS

implementation may support the responder role functionality specified in 8.2.4.2. A SDS implementation

may support the requester role functionality specified in 8.2.4.1. A SDS implementation that supports

requester role functionality shall also support responder role functionality.

4.2.5 1609.2 security profile

The information elements used by the SDS operations are specified in 9.2.2 as (sometimes optional)

parameters to primitives; the SPDU data structures and their encodings are specified in Clause 6. The IEEE

1609.2 security profile (occasionally referred to in this document simply as the “security profile”) specified

in Annex C is a format suggested for use by the specifier of a SDEE as a compact way to specify which SDS

parameters are used and which values they should take for that particular SDEE. Additionally, the security

profile allows the SDEE specifier to specify other aspects of the security behavior of the SDEE; see Annex

C for more information.

Examples of security profiles can be found in Clause 7 of this document (for use with CRLs) and in IEEE

Std 1609.3 (for use with WAVE Service Advertisements).

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

18

4.3 Security services management entity (SSME)

4.3.1 General

The SSME stores certificates and information about certificates. The information stored by the SSME relates

to both certificates for which the corresponding private key is stored by the SDS (i.e., locally held certificates)

and certificates for which the corresponding private key is not stored by the SDS, (e.g., those belonging to

peer SDEEs and to Certificate Authorities [CAs]).

The SSME stores the following information relating to each certificate that it manages:

 The certificate data.

 The last time relevant revocation information was received, if any (see 5.1.3).

 The next time revocation information is expected to be received, if any (see 5.1.3). This time may be

in the past.

 The certificate’s verification status, which is one of the following:

 Verified and trusted, meaning that it satisfies all the validity conditions of 5.1.

 Chain does not end in trust anchor (see 5.1.2.1).

 Chain too long for implementation (see 5.1.2.3).

 Not cryptographically valid (see 5.1.2.3).

 Not yet cryptographically validated.

 Inconsistent permissions in chain (see 5.1.2.4).

 Revoked (see 5.1.3).

 Dubious (see 5.1.3.6).

 Certificate or chain contains unsupported critical information fields (see 5.2.5).

 Invalid encoding (certificate or certificate in its chain is not a valid encoding of the data

structures in Clause 6).

 Whether or not the certificate is a trust anchor.

This standard refers to certificates whose management information is available within the SSME as

certificates that are “known to” or “managed by” the SSME. When certificate information is added to an

instance of a SSME, the SSME makes it available to all SDEEs and instances of the SDS that have access to

that SSME.

As illustrated in Figure 2, the SSME has two Service Access Points (SAPs) through which other entities

communicate with it to obtain and update security management information: one for use primarily by the

SDS (SSME-Sec-SAP), and one for use by the SDS and by other entities (SSME-SAP).

The SSME-SAP is used:

 To add information about certificates via SSME-AddCertificate.request and SSME-AddCertificate.-

confirm

 To provide information about managed certificates via SSME-CertificateInfo.request and SSME-

CertificateInfo.confirm

 To request that a certificate is verified via SSME-VerifyCertificate.request and SSME-Verify-

Certificate.confirm

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

19

 To request deletion of information about a certificate via SSME-DeleteCertificate.request SSME-

DeleteCertificate.confirm

 To add a certificate to its list of trust anchors via SSME-AddTrustAnchor.request and SSME-

AddTrustAnchor.confirm

 To update revocation information for a certificate via SSME-AddHashIdBasedRevocation.request,

SSME-AddHashIdBasedRevocation.confirm, SSME-AddIndividualLinkageBasedRevocation.request,

SSME-AddIndividualLinkageBasedRevocation.confirm, SSME-AddGroupLinkageBasedRevo-

cation.request, and SSME-AddGroupLinkageBasedRevocation.confirm

 To update information about CRLs relevant to managed certificates via SSME-AddRevocation-

Info.request and SSME-AddRevocationInfo.confirm

 To provide information about CRLs relevant to managed certificates via SSME-

RevocationInformationStatus.request and SSME-RevocationInformationStatus.confirm

 To enable application processes associated with peer-to-peer certificate distribution via SSME-

P2pcdResponseGenerationService.request, SSME-P2pcdResponseGenerationService.confirm, and

SSME-P2pcdResponseGeneration.indication

The SSME-Sec-SAP is used:

 To provide information about replayed PDUs via SSME-Sec-ReplayDetection.request and SSME-

Sec-ReplayDetection.confirm

 To provide information to enable peer-to-peer certificate distribution as specified in Clause 8 via

SSME-Sec-IncomingP2pcdInfo.request, SSME-Sec-IncomingP2pcdInfo.confirm, SSME-Sec-

OutgoingP2pcdInfo.request, and SSME-Sec-OutgoingP2pcdInfo.confirm

 To enable configuration of peer-to-peer certificate distribution via SSME-

P2pcdConfiguration.request and SSME-P2pcdConfiguration.confirm

In addition to the SSME-Sec-SAP primitives, the SDS operations in this standard invoke the following

SSME-SAP primitives:

 SSME-AddCertificate.request

 SSME-CertificateInfo.request

 SSME-VerifyCertificate.request

 SSME-RevocationInformationStatus.request

The SSME-SAP specification in this document assumes that all information provided to the SSME is

trustworthy; how this is ensured is outside the scope of this standard.

4.3.2 Peer-to-peer certificate distribution

The SSME may also support peer-to-peer certificate distribution operations as specified in Clause 8. A SSME

implementation may support the responder role functionality specified in 8.2.4.2. A SSME implementation

that supports requester role functionality shall also support responder role functionality.

4.4 Behavior of SDEEs

This standard specifies WAVE Security Services and does not specify SDEE behavior. However, WAVE

Security Services protect SDEEs most effectively if used appropriately. D.1 provides guidance for

implementers of SDEEs.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

20

5. Cryptographic operations and validity

5.1 Certificate validity

5.1.1 Certificate contents

A certificate is a data structure used to transport the following information:

 A public key used to verify digital signatures (the “verification key”)

 The permissions associated with that public key

 Optionally, a public key that may be used to encrypt data

 An identifier for the issuer

 Information that may be used to determine whether or not the certificate has been revoked as specified

in 5.1.3

 A cryptographic demonstration that the issuer authorized the linkage between the public key and the

permissions

The entity that uses the private key corresponding to the public key is referred to as the certificate holder.

“Permissions” consist of:

 Geographic permissions: the region within which the certificate is valid, if relevant

 Validity period: the time period within which the certificate is valid

 Application permissions: the activities other than certificate request and issuance that the holder is

allowed to perform

 Certificate issuance permissions: The type(s) of certificate, if any, that the holder is permitted to issue

 Certificate request permissions: The type(s) of certificate request, if any, that the holder is permitted

to generate

Provider Service Identifiers (PSIDs) are used in certificates to specify permitted application areas. The PSID

is defined in IEEE Std 1609.12™. A Service Specific Permission (SSP) is provided (explicitly or implicitly)

for each PSID in the Application Permissions, identifying specific sender permissions within that PSID’s

application area. The syntax and semantics of the SSP are specific to each PSID value.

When a certificate is being used to authorize application PDUs it is referred to as an authorization certificate.

Certificate issuance permissions, i.e., the permissions that govern what certificates a CA is authorized to

issue, are expressed using the following information elements (see 6.4.31 for a full specification):

 One or more PSIDs.

 For each PSID, the SSP Range, which identifies the SSPs associated with that PSID for which the

CA is permitted to grant permissions.

 The permissible length(s) of the certificate chain from the certificate containing these issuance

permissions to the certificate that signs the PDU. Certificate chain length is defined in 5.1.2.1.

 The end-entity type permissions, which indicate whether the ultimate end-entity certificate permits

application operations, certificate request operations, or both.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

21

When a certificate is being used to issue certificates it is referred to as a CA certificate.

Certificate request permissions are expressed using the same information elements as certificate issuance

permissions. When a certificate is being used to request certificates it is referred to as an enrollment

certificate.

The “cryptographic demonstration that the issuer authorized the linkage between the verification key and the

permissions” comes in two forms, referred to as explicit and implicit certificates.

 If the verification key is explicitly given in the certificate, the certificate is an explicit certificate. In

this case the cryptographic demonstration that the issuer authorized the linkage is provided by the

issuer’s signature on the certificate.

 If the verification key is not explicitly given in the certificate, but is obtained from a reconstruction

value in the certificate and the issuer’s public key via the reconstruction function specified in 5.3.2,

the certificate is an implicit certificate and the corresponding verification key is referred to as the

associated public key.9 In this case the cryptographic demonstration that the issuer authorized the

linkage is provided by the fact that a signature verifies correctly with the verification key that was so

derived.

The difference between implicit and explicit certificates is illustrated in Figure 4.

CA Certificate

public key

Implicit Certificate

Explicit Certificate

public key

reconstruction

value
public key public key

Reconstruction

Function

Figure 4 —Implicit and explicit certificates

An explicit certificate is invalid if it has an implicit certificate as its issuer. An implicit certificate may have

an implicit or an explicit certificate as its issuer.

5.1.2 Certificate chain

5.1.2.1 Certificate chain construction

A certificate chain is a set of certificates ordered from “top” to “bottom”, (equivalently, “first” to “last” or

“beginning” to “end”) such that each certificate in the chain, except the last one, is the issuing certificate for

one below (or “after”) it and each certificate, except the first one, is the subordinate certificate of the

certificate above (or “before”) it.

One certificate is the issuing certificate for a second one if the certificate holder of the first certificate used

the private key of the first certificate to create the final form of the second certificate, either by signing it (in

the case of an explicit certificate) or by carrying out cryptographic operations to create a reconstruction value

(in the case of an implicit certificate). The counterpart of an issuing certificate is a subordinate certificate. If

certificate B is the issuing certificate for certificate A, for compactness this standard uses the terminology “B

9 Elliptic Curve Qu-Vanstone (ECQV) or “implicit” certificates were proposed in Brown, Gallant, and Vanstone [B3] and Pintsov and
Vanstone [B18], and modifications to protect against attacks were proposed in Brown, Campagna, and Vanstone [B4].

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

22

issues A” even though it would be more correct to use the terminology “B’s holder issues A” or “the private

key associated with B issues A”.

A trust anchor is any certificate that is established to be trustworthy by itself, e.g., by preconfiguration or

independent provisioning; in other words, not by reference to any other certificate. A necessary (but not

sufficient) condition for a certificate to be valid is that it is possible to construct a certificate chain from the

certificate to a trust anchor. The SSME stores information about which certificates are trust anchors.

A root certificate is an explicit certificate that is verified with the public key included directly in the

certificate, in contrast to other certificates that are verified using the verification key of the issuing certificate.

There is no distinct issuing certificate for a root certificate. All trusted root certificates are by definition trust

anchors. A certificate chain that starts with a root certificate is referred to in this standard as a full certificate

chain.

The length of a certificate chain is defined as the number of certificates in the chain apart from the topmost

one, or equivalently as the number of intra-certificate gaps in the chain. Figure 5 illustrates these two

definitions. Figure 6 illustrates that the definition also applies to a “subchain” within a longer chain, i.e. that

the definition does not assume that the topmost certificate is a root certificate or that the bottom certificate is

an end-entity certificate.

Topmost / first / beginning
certificate

CA certificate

CA certificate

Bottom / last / ending
certficiate

D
ep

th
 = 3

Topmost / first / beginning
certificate

CA certificate

CA certificate

Number of
gaps

between
certificates

D
ep

th
 = 3

Bottom / last / ending
certficiate

Issues

Issues

Issues

Number of
certificates
below the
topmost

Issues

Issues

Issues

Figure 5 —A certificate chain of length 3

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

23

Topmost / first / beginning
certificate

CA certificate

CA certificate

Number of
gaps

between
certificates

Le
n

g
th

 =
 3

Bottom / last / ending
certficate

Issues

Issues

Issues

Subordinate certificate, not
part of the chain under

consideration

Issues

Issuing certificate, not part
of the chain under

consideration

Issues

Figure 6 —A subchain of length 3 within a longer chain

To enable construction of certificate chains, each IEEE 1609.2 certificate contains an identifier for its issuer.

An example algorithm for the construction of certificate chains is specified in D.3.1 and illustrated in D.3.2.

In constructing the certificate chain, the receiver uses a combination of the certificates that were included in

the signed SPDU and locally cached copies of certificates. Local copies of certificates are managed by the

SSME.

The issuer identifier is obtained by calculating an eight-octet cryptographic digest of the issuing certificate.

There is therefore a 2-64 probability that any pair of CA certificates known to the SSME have the same eight-

byte digest. If this happens, then when a certificate or SPDU comes to be validated, two chains can be

constructed consistent with the issuer identifiers. The certificate or SPDU is considered valid if either of the

chains is cryptographically valid.

5.1.2.2 Maximum supported certificate chain length

An implementation of WAVE Security Services may have a maximum length of full certificate chain that it

can support. A conformant implementation shall support a maximum length of at least two, i.e. a maximum

total number of certificates in the chain of at least three. The Protocol Implementation Conformance

Statement (PICS) proforma given in Annex A allows the vendor of an implementation of WAVE Security

Services to state the maximum length of certificate chain that the implementation supports.

5.1.2.3 Cryptographic validity of a chain

A certificate chain is cryptographically valid if the following conditions hold:

 For each explicit certificate in the chain, the signature on that certificate can be cryptographically

verified with the public key in the issuing certificate. See Figure 7 for an illustration.

 If the chain ends with one or more implicit certificate: the signature on a signed SPDU can be verified

with the associated public key from the last certificate in the chain.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

24

If the chain ends with one or more implicit certificates, and no signed SPDU can be verified with the

associated public key from the last certificate in the chain, then the cryptographic validity of the implicit

certificates is undetermined. If an implicit certificate is known to be valid, then an implementation has the

option of deriving the public key and caching it, marked as valid, for faster verification of later messages

signed with that certificate. If the validity of an implicit certificate is undetermined, this optimization is not

available to an implementation because the derived public key cannot be marked as valid.

See Figure 7 for an illustration involving explicit certificates. See Figure 8 for an illustration involving an

implicit authorization certificate.

For all signed SPDUs, the hash operation, signature, and verification are carried out as specified in 5.3.1.

The encoding of data structures for input to those cryptographic operations is defined in Clause 6.

Signed Data

signer

Issuer’s signature

End-Entity Certificate

issuer identifier

public key

Issuer’s signature

Root CA Certificate

public key

Issuer’s signature

verifiesissuer ↑ ↓ subordinate

↓ trust anchor

identifies

Figure 7 — Cryptographic verification of a signed SPDU with a full certificate chain, using
explicit certificates

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

25

Signed Data

signer

Issuer’s signature

End-Entity Implicit

Certificate

issuer identifier

CA Implicit Certificate

signer_id

reconstruction

value

combine to verify

CA Certificate

issuer identifier

public key

Issuer’s signature

issuer ↑ ↓ subordinate

↓ trust anchor

identifies

reconstruction

value

Figure 8 —Cryptographic Verification of a signed SPDU with a (non-full) certificate chain with
implicit end-entity certificate

For further illustrations, see D.3.1.

5.1.2.4 Consistency of permissions within a certificate chain

In a certificate chain associated with a valid signed SPDU, the certificate that signs the PDU includes

application permissions and all other certificates include certificate issuance permissions.

A valid certificate’s permissions are consistent with its issuer’s permissions. A valid certificate chain contains

only valid certificates.

A self-signed certificate (i.e., a root CA certificate) is consistent with itself by definition. A subordinate

certificate is consistent with its issuing certificate if the following conditions hold:

 Geographic consistency: No point in the subordinate certificate’s validity region is outside the

issuing certificate’s validity region.

 Validity period consistency: The subordinate certificate’s validity period is within the issuing

certificate’s validity period.

 Consistency of application/issuance permissions: The subordinate certificate’s application or

certificate issuance permissions are consistent with the issuing certificate’s certificate issuance

permissions, i.e., for every (PSID, SSP) entry in the subordinate certificate’s application or certificate

issuance permissions (the “subordinate entry”) there is an entry in the issuing certificate’s certificate

issuance permissions (the “issuing entry”) such that:

 The PSID in the subordinate entry is the same as the PSID in the issuing entry.

 The SSP or SSP Range in the subordinate entry is equal to or a subset of the SSP Range in the

issung entry. See 6.4.35 for a full definition of consistency of SSP with SSP Range, or of one

SSP Range with another.

 If the subordinate entry is for cert issuance, the permitted length of the chain in the subordinate

entry is consistent with the permitted length of the chain in the issuing entry. Specifically, if

minChainLength and chainLengthRange in the subordinate certificate and issuing certificate

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

26

have the values mcls, clrs, mcli, clri, respectively, then mcli ≤ mcls+1 and (mcli + clri) ≥ (mcls +

clrs +1). (In the case where the subordinate certificate is an end-entity certificate, mcls and clrs

are set equal to zero (0) in these formulas.)

 The eeType field in the issuing entry permits the subordinate entry, i.e.:

 If the subordinate entry is in the application permissions field, then:

 The eeType field in the issuing entry includes the value app.

 If the subordinate entry is in the certificate issuance permissions field, then:

 All the values of eeType in the subordinate entry also appear in the issuing entry.

 Cryptographic consistency:

 If the issuing certificate is an explicit certificate: the verification key from the issuing certificate

can be used to verify the subordinate certificate.

 If the issuing certificate is an implicit certificate: the cryptographic material in the certificates

can be used to verify a signature on a SPDU.

Figure 9 illustrates the process of checking that a subordinate certificate is consistent with its issuing

certificate, and additionally captures the process of checking that a certificate is internally consistent as

defined in Clause 6. For clarity, only the relevant fields within the data structures are shown. Clause 9

specifies example processing steps that correctly carry out this check.

issuer identifier1

certificate issuance

permissions

Issuing Certificate

permitted

geographic region

start validity time

expiry time (start

validity time +

duration)

public key3

Issuer’s signature
3

issuer identifier

certificate

issuance /

application

permissions
2

Subordinate Certificate

permitted

geographic region

start validity time

expiry time (start

validity time +

duration)

public key3

Issuer’s signature
3

is equal to or contains

is equal to or before

is equal to or after

permit

when hashed, gives

verifies

NOTES:

1. Not included if the holder is a root CA

2. Application permissions for the PDU signing certificate, certificate issuance permissions for all

other certificates

3. For implicit certificates, the test of cryptographic validity is whether signed data can be

cryptographically verified with a public key derived from the issuing certificate and the

subordinate certificate.

Figure 9 —Consistency of permissions between an issuing and a subordinate certificate,

and within the subordinate certificate

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

27

5.1.2.5 Trustworthiness of a certificate chain

A certificate chain is trustworthy if the following hold:

 Each subordinate certificate is consistent with its issuing certificate.

 The chain begins with a trust anchor.

 None of the certificates in the chain have been revoked, as discussed in 5.1.3.

 (Optional) none of the certificates in the chain have expired at the time of chain verification, as

discussed in 5.2.4.2.1 and 5.2.4.2.7.

Whether the expiry test is applied is specified as part of the SDEE specification, as discussed in 5.2.4.2.7. It

is strongly recommended that chains with expired certificates are treated as untrustworthy.

5.1.3 Revocation and expiry

5.1.3.1 General

A certificate is said to be revoked if an appropriately authorized entity states that that certificate is known not

to be trustworthy. If a certificate is revoked, the SDS shall consider all SPDUs signed by that certificate and

received after the issue date of the revocation statement to be invalid even if their stated generation time is

before the issue date of the revocation statement.

If a CA certificate is revoked, the SSME shall indicate that any certificates issued by that CA certificate and

first received after the issue date of the revocation statement are revoked, even if their stated start of validity

period is before the issue date of the revocation statement. This applies to any certificate that chains back to

the revoked CA certificate.

Information about revoked certificates is stored by the SSME via the SSME-AddRevocationInfo.request and

SSME-AddRevocationInfo.confirm primitives. The SSME provides the revocation status of certificates via

the SSME-CertificateInfo.request and SSME-CertificateInfo.confirm primitives. Revocation information

consists of a series of individual data items and information allowing the SSME to associate the revocation

information with specific certificates.

For any certificate C, there is at most one authority with authorization to issue revocation information for

that certificate. Each such authority might be entitled to issue and keep up to date more than one set of

revocation information, but there is one specific set that is identified as the one that will contain revocation

information about C if it is revoked. Therefore, the process of determining whether or not a certificate is

revoked involves two steps:

a) Determine which set of revocation information applies to the certificate.

b) Determine whether any individual data item within the relevant revocation information indicates that

the certificate is revoked.

The rules used to determine whether a set of revocation information applies to a given certificate are defined

in 5.1.3.2.

There are two forms of revocation information. The type of revocation information that applies to a certificate

is indicated by the CertificateId field in the certificate:

 Linkage-based: If the CertificateId field indicates the choice linkageData, the certificate is

revoked by publishing the linkage seed value corresponding to the linkageData value. See 5.1.3.4

for a full description.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

28

 Hash ID-based: If the CertificateId field indicates the choice name, binaryId, or none, the

certificate is revoked by publishing a hash of the certificate. See 5.1.3.5 for a full specification.

All forms of revocation information include the following information fields that indicate which set of

certificates it is revoking:

 The Certificate Revocation Authorizing CA (CRACA) certificate

 The CRL Series value

The use of this information is specified in 5.1.3.2.

The certificate revocation list (CRL) is a data structure for distribution of CRL information. A CRL contains

one or more revocation information items. The CRL structure and a specification of how to secure CRLs

using the mechanisms of this standard are defined in Clause 7.

5.1.3.2 Determining which revocation information applies to a given certificate

Revocation information applies to a given certificate if it:

 Indicates that certificate’s Certificate Revocation Authorizing CA (CRACA) certificate, and

 Indicates that certificate’s CRL Series value, and

 Is of the appropriate type (linkage-based or hash ID-based)

A CRACA is a CA that has authority to authorize the issuance of revocation information for a particular

group of other certificates. The CRACA certificate for a certificate C is only valid if it is one of the certificates

in C’s full chain. Likewise, when the revocation information is transported in the form of a signed CRL, the

CRACA certificate is only valid if it either signed the CRL itself, or issued the certificate that signed the

CRL.

The CRL Series value is an integer that allows a CA to partition its issued certificates into groups that appear

on different CRLs.

A certificate indicates the relevant CRACA certificate, CRL series value, and revocation type as specified in

6.4.8. If revocation information is received via a CRL, that CRL indicates the relevant CRACA certificate,

CRL series value, and revocation type as specified in 7.3. The primitives SSME-AddRevocationInfo.request,

SSME-AddRevocationInfo.confirm, SSME-CertificateInfo.request and SSME-CertificateInfo.confirm allow

the CRACA certificate and CRL series to be associated with certificates and revocation information managed

by the SSME.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

29

Revocation InformationCertificate

CRACA Identifier

CA Implicit CertificateCRACA Certificate

CRL series

CRACA Identifier

CRL series

Identifies Identifies

Matches

Revocation typeRevocation type Matches

Figure 10 —Relationship between certificate and revocation information

When revocation information for a given certificate is transported in a signed CRL, the CRL is validly

authorized only if one of the following conditions holds:

 The certificate’s CRACA signed the CRL, or

 The certificate’s CRACA issued a certificate which signed the CRL (referred to as a CRL signer

certificate)

Examples of the two types of acceptable relationship between the CRL and the CRACA are given in Figure

11.

CRACA +

CRL Signer

Authorizes

CA

CA

Certificate

Authorizes

Authorizes

Rev.

Info

Authorizes

CA

Authorizes

CRACA

Certificate

Authorizes

CA

CA

Certificate

Authorizes

Authorizes

Rev.

Info

Authorizes

CRL

Signer

Authorizes

CA

Authorizes

Figure 11 —Revocation information: issued by a CRACA (on the left) or

by a CRL signer directly authorized by the CRACA (on the right)

5.1.3.3 Identification of CRACA certificate

A certificate contains a cracaId field as specified in 6.4.8. This is an octet string of length 3. The relevant

CRACA certificate is the certificate in the full chain for which the low-order three bytes of its SHA-256 hash

are equal to the cracaId. The hash of the certificate is obtained as specified in 6.3.26.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

30

A cracaId of all 0s and a CrlSeries value of 0 indicates that the certificate will not be revoked, i.e., that there

is no revocation list that it will appear on. This may be because the certificate has a very short lifetime or for

some other reason.

A cracaId of all 0s and a non-zero CrlSeries value indicates that the certificate will appear on a CRL signed

by itself.

If a certificate has a non-zero cracaId, and the cracaId is not matched by a unique certificate in the full chain

(i.e either it is not matched at all, or it is matched by more than one certificate), then the certificate is invalid.

Figure 12 illustrates logic flows used in determining the CRACA for a certificate.

CA Certificate

issuer identifier

Root CA Certificate

identifies

CA Certificate

issuer identifier

identifies

Certificate

issuer identifier

identifies

cracaId

matches?3-byte hash

= CRACA

non-zero?

yes

Certificate

issuer identifier

cracaId = 00 00 00?

No: is own CRACA

crlSeries

= 0?
Yes: does not

appear on CRL

Yes

Figure 12 —Examples: determining the CRACA certificate for a certificate

5.1.3.4 Linkage-based revocation information

The purpose of linkage-based revocation information is to allow multiple certificates to be revoked with a

single item of revocation information. Linkage-based revocation supports the case where an SDEE has

multiple certificates valid within a time period.

Linkage-based revocation information was originally described in Whyte, et al. [B24].

This standard defines two types of linkage-based revocation information. Individual linkage information

allows multiple certificates owned by a single SDEE to be revoked. Group linkage information allows

certificates owned by all SDEEs within a predefined group to be revoked. A certificate may include none,

one, or both of individual linkage information and group linkage information. The mechanism by which it is

determined at issuance time that different certificates are members of the same group is not specified in this

standard.

This subclause specifies how individual and group revocation information is used to determine the revocation

status of a certificate containing specific individual or group linkage data.

Individual linkage data. A certificate is revoked if it is indicated to be revoked by any of the individual data

items within the collection of individual revocation information relevant to the certificate.

A data item within the individual revocation information includes the following information fields. The

information fields are provided to the SSME via SSME-AddIndividualLinkageBasedRevocation.request,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

31

SSME-AddIndividualLinkageBasedRevocation.confirm. The specification of these information fields within

a CRL is given in 7.3. The use of these fields is explained in this subclause.

 iRev, an integer, an indication of the time period when the revocation information becomes effective

 iMax, an integer, an indication of the time period when the revocation information stops being

effective

 jMax, the number of certificates within each time period

 LinkageSeed1, an octet string of length 16

 LinkageAuthorityIdentifier1, an indication of the linkage authority that generated linkage seed 1, an

octet string of length 2

 LinkageSeed2, an octet string of length 16

 LinkageAuthorityIdentifier2, an indication of the linkage authority that generated linkage seed 2, an

octet string of length 2

The values LinkageSeed1 and LinkageSeed2 are unique to a particular data item within the revocation

information. The other values may be common to multiple data items within the revocation information.

Certificates that include linkage data contain the values indicated in 6.4.10.

 iCert, an indication of the time period that applies to the certificate. The intent of the design is that a

given value of iCert should refer to the same time period for all certificates with the same (CRACA,

CRL Series) value.

 LinkageValue, the value used to determine whether or not the certificate is revoked.

The following calculations determine whether a data item indicates that a certificate is revoked. The values

iRev, LinkageSeed1, and LinkageSeed2 are modified from their original values during the operation of these

algorithms.

a) If iCert > iMax, the revocation information is not relevant for this certificate

b) While iRev < iCert:

1) Set LinkageSeed1 = the low-order 16 octets of [SHA-256(LinkageAuthorityIdentifier1 ||

LinkageSeed1 || 0112)], where 0112 is 112 0 bits

2) Set LinkageSeed2 = the low-order 16 octets of [SHA-256(LinkageAuthorityIdentifier2 ||

LinkageSeed2 || 0112)]

3) Set iRev = iRev+1

c) For j = 0 to jMax – 1:

1) Set data = LinkageAuthorityIdentifier1 || Uint32(j) || 080, where Uint32(j) indicates j represented

as a 4-octet integer in network byte order

2) Set PreLinkageValue1(j) = AES (key = LinkageSeed1, data = data) XOR (data), where

LinkageSeed1 is the value LinkageSeed1 takes after completing the iterative process defined in

step b)

3) Set PreLinkageValue2(j) = AES (key = LinkageSeed2, data = [010 || LinkageAuthorityIdentifier2

|| Uint32(j)]) XOR [010 || LinkageAuthorityIdentifier2 || Uint32(j)]

4) Set LinkageValue(j) = the low-order 9 bytes of PreLinkageValue1 XOR PreLinkageValue2

5) If LinkageValue(j) = LinkageValue, the certificate is considered revoked

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

32

Group linkage data. A certificate is revoked if any data item within the collection of group revocation

information relevant to the certificate indicates that the certificate is revoked.

A data item within the group revocation information includes the following information fields. The

information fields are provided to the SSME via SSME-AddGroupLinkageBasedRevocation.request and

SSME-AddGroupLinkageBasedRevocation.confirm. The specification of these information fields within a

CRL is given in 7.3. The use of these fields is explained in this subclause.

 iRev, an integer, indication of the time period when the revocation information was generated

 iMax, an integer, indication of the time period when the revocation information stops being effective

 GroupLinkageSeed1, an octet string of length 16

 LinkageAuthorityIdentifier1, an indication of the linkage authority that generated linkage seed 1, an

octet string of length 3

 GroupLinkageSeed2, an octet string of length 16

 LinkageAuthorityIdentifier2, an indication of the linkage authority that generated linkage seed 2, an

octet string of length 3

The values GroupLinkageSeed1 and GroupLinkageSeed2 are unique to a particular data item within the

revocation information. The other values may be common to multiple data items within the revocation

information.

Certificates that include group linkage data contain the values indicated in 6.4.12:

 iCert, an indication of the time period that applies to the certificate. The intent of the design is that a

given value of iCert should refer to the same time period for all certificates with the same (CRACA,

CRL Series) value.

 j, the index of the certificate within the current time period.

 GroupLinkageValue, the value used to determine whether or not the certifiate is revoked.

The following calculations determine whether a data item indicates that a certificate is revoked:

a) If iCert > iMax, the revocation information is not relevant for this certificate.

b) While iRev < iCert:

1) Set GroupLinkageSeed1 = the low-order 16 octets of [SHA-256(LinkageAuthorityIdentifier1 ||

GroupLinkageSeed1 || 0112)], where 0112 is 112 0 bits

2) Set GroupLinkageSeed2 = the low-order 16 octets of [SHA-256(LinkageAuthorityIdentifier2 ||

GroupLinkageSeed2 || 0112)]

3) Set iRev = iRev + 1

c) Set data = LinkageAuthorityIdentifier1 || Uint32(j) || 080, where Uint32(j) indicates j represented as a

4-octet integer in network byte order.

d) Set PreLinkageValue1 = AES (key = GroupLinkageSeed1, data = data) XOR data, where

GroupLinkageSeed1 is the value GroupLinkageSeed1 takes after completing the iterative process

defined in step b)

e) Set PreLinkageValue2 = AES (key = GroupLinkageSeed2, data = [LinkageAuthorityIdentifier2 ||

Uint32(j) || 080]) XOR [LinkageAuthorityIdentifier2 || Uint32(j) || 080]

f) Set GroupLinkageValue = the low-order 9 bytes of PreLinkageValue1 XOR PreLinkageValue2

g) If GroupLinkageValue = GroupLinkageValue, the certificate is considered revoked

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

33

5.1.3.5 Hash ID-based revocation information

For certificates that do not include linkage data, there is no group revocation information, only individual

revocation information. Individual or hash ID-based revocation information is provided to the SSME via

SSME-AddHashIdBasedRevocation.request and SSME-AddHashIdBasedRevocation.confirm. An

individual revocation information item consists of:

 certId, an octet string of length 10

The following calculations determine whether a data item indicates that a certificate is revoked:

a) Set tmpCertId equal to the HashedId10 of the certificate.

b) If tmpCertId = certId, the certificate is considered revoked.

5.1.3.6 Dubious certificates

For each known (CRACA, CRL Series) pair, the SSME maintains an expected update time, i.e., the time

when the revocation information issuer has indicated that revocation information is going to be updated. This

value is set to “undefined” if the SSME has never received revocation information for that (CRACA, CRL

Series) pair. The expected update time for revocation information contained in a CRL is given in the

nextCrl field.

A certificate is considered by the SSME to be a dubious certificate if either no revocation information is

available for that certificate, or the expected update time for that revocation information is in the past.

If queried about the revocation status of a dubious certificate via SSME-CertificateInfo.request, the SSME

indicates that the certificate is dubious via SSME-CertificateInfo.confirm.

Any certificate in the full chain associated with a signed SPDU might potentially be dubious. The primitive

Sec-SecureDataPreprocessing.confirm indicates the earliest nextCrl time associated with any certificate

in the full chain associated with a signed SPDU. If that time is in the past, the certificate is considered dubious.

The standard provides the following mechanisms to handle the case where the SDS determines that a SPDU

signed with a dubious certificate would be valid if the certificate was known not to be revoked, i.e., it passes

all checks except that its revocation status is undetermined:

 Use Overdue CRL Tolerance within SDS: The SDS may be passed a parameter Overdue CRL

Tolerance via Sec-SignedDataVerification.request. In this case, if the earliest nextCrl time for any

certificate in the full chain is in the past by more than Overdue CRL Tolerance, the SDS indicates

that the signed SPDU is invalid. If the parameter is not passed, the SDS indicate as valid a signed

SPDU that meets all other validity conditions, regardless of the nextCrl time values.

 SDEE-specific processing: The SDEE may alternatively obtain the earliest nextCrl time for any

certificate in the full chain via Sec-SecureDataPreprocessing.request, Sec-SecureDataPre-

processing.confirm. How a SDEE handles dubious certificates is SDEE-specific.

5.2 Signed SPDU validity

5.2.1 General

The SDS supports two forms of signed SPDU: SPDUs signed by a certificate, and self-signed SPDUs. The

1609.2 security profile (see Annex C) is provided to enable an SDEE specification to state which form or

forms are permitted for that SDEE. It is strongly recommended that SDEE specifications permit only SPDUs

signed by a certificate.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

34

A signed SPDU is valid for use by a receiving SDEE if all of the following hold:

 The SPDU meets a set of conditions that depend only on information sent by the sender, referred to

as consistency conditions. These are discussed in 5.2.3.

 The SPDU meets other criteria, referred to as relevance conditions, which take into account the local

time, location, and other state of the receiving SDEE. These are discussed in 5.2.4.

 The SPDU contains no unsupported critical information fields. Critical information fields are

information fields that are necessary to determine whether a SPDU is valid. This is discussed in 5.2.5.

Consistency conditions make use of the claimed generation time and location of the signed SPDU. Relevance

conditions make use of the claimed generation time and location of the signed SPDU, and the current time

and location of the receiving SDEE. Time and location measurement requirements for the SDS are discussed

in 5.2.2.

Figure 13 illustrates the different validity conditions used to determine the validity of a signed SPDU that is

signed by a certificate, and the input information used to check against those validity conditions. Figure 14

shows the information fields that go into creating a signed SPDU that is signed by a certificate.

Received IEEE 1609.2 Signed
SPDU

BobBob

Verification

Public
key A

Valid /
Invalid

Hash fn
Hash
value

Signature

Data

Signer
Certificate

CertificateCertificate

Other
Certificates
(optional)

Signature

Chain is
cryptographically valid
Chain leads to a known
certificate
Permissions are
consistent

Received
Certificates

Valid /
Invalid

Known Valid CA
Certificates (local)

Revocation conditions

Received
Certificates

Valid /
Invalid

Revocation
Information (local)

Consistency conditions

Data

Valid /
Invalid

Signer Certificate

Relevance conditions
(replay, freshness,

locality)
Data

Valid /
Invalid

Valid (all) /
Invalid (any)

Figure 13 —Validity conditions for a signed SPDU

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

35

Generation
Location

(opt.)

Original
Payload

1609.2
type =

unsecured

Original
Payload

1609.2
version

Hash of
external

data

Original
Payload

(opt.)

OCTET STRING

Ieee1609Dot2Data

Hash
identifier

HashedData

Hash of
external

data (opt.)

OCTET STRING

One or both of

Payload data

SIgnedDataPayload

PSID

Psid

Generation
Time (opt.)

Time64

Expiry Time
(opt.)

Time64 3DLocation

P2PCD
request
(opt.)

HashedId3

Missing CRL
Identifier

(opt.)

MissingCrlIden.

Encryption
Key (opt.)

EncryptionKey

Header Info

HeaderInfo

ToBeSigned
Data

ToBeSignedData

Signer’s
Certificate

Certificate

Signer’s
private key

Hash and
sign

ToBeSigned
Data

ToBeSignedData

Type

SignerInfo

Signer
identifying

data

Certificate, certificate chain, or digest of certificate

Algorithm

Signature

Signature
data

Hash
identifier

HashAlgorithm

1609.2
type =
signed

SignedData
1609.2
version

Ieee1609Dot2Data

Must have
at least one

Figure 14 —Decomposition of a signed SPDU

5.2.2 Local estimates of time and location

Some of the consistency and relevance conditions within WAVE Security Services make use of estimates of

time and location. Estimates of time and location (first-order statistical information) are assumed to be

provided by a location server such as a Global Navigation Satellite System (GNSS) subsystem.

When generating a signed SPDU, the estimated generation time may be included. The estimated generation

time is an estimate of the time at which the information elements for the signed SPDU were assembled for

encoding.

When carrying out relevance tests on signed SPDUs, secure data exchange services use estimated generation

time as described in 5.2.4.2.2, 5.2.4.2.3, and 5.2.4.2.5.

When generating a signed SPDU, the estimated generation location may be included. The estimated

generation location is an estimate of the location of the transmitter at the estimated generation time defined

above. When carrying out relevance tests on signed SPDUs, secure data exchange services use the estimated

generation location estimates as described in 5.2.4.2.5.

This standard only specifies the use of first-order statistics in performing consistency and relevancy checks.

More sophisticated relevance checks, including ones using second-order statistics to account for estimation

error (co-)variances, are SDEE-specific. Performance requirements on time and location estimation are out

of scope of this standard.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

36

5.2.3 Consistency conditions

5.2.3.1 General

There are two types of consistency conditions; global consistency conditions which do not depend on the

specific SDEE that consumes the SPDU, and SDEE-specific consistency conditions which do depend on the

receiving SDEE but not on its local conditions.

5.2.3.2 Global consistency conditions

5.2.3.2.1 General

Global consistency conditions are:

 The SPDU is correctly formed using the data structures of Clause 6.

 The signature on the SPDU verifies with the appropriate certificate or public key, as specified in

5.2.3.2.2.

 The SPDU is internally consistent, as specified in 5.2.3.2.4.

 EITHER the SPDU is self-signed and the SDEE specification permits self-signed SPDUs;

 OR the SPDU is signed with a certificate and all of the following conditions hold:

 There is a certificate chain that leads from the signing certificate to a known trust anchor,

constructed as specified in 5.1.2.1, such that:

 All of the certificates in the chain are correctly formed using the data structures of Clause

6.

 All certificates in the chain pass cryptographic verification with the appropriate public

keys as specified in 5.1.2.3.

 The certificate chain is internally consistent as specified in 5.1.2.4.

 None of the certificates in the chain have been revoked as specified in 5.1.3.

 The PDU is consistent with the signing certificate:

 The permissions indicated by the security envelope are consistent with the permssions in

the signing certificate, and the security envelope is consistent with itself, as specified in

5.2.3.2.3.

The PDU cryptographically verifies with the appropriate public keys. The cryptographic operations used for

signing and verification are specified in 5.3.1. The encoding of data structures for input to those cryptographic

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

37

operations is defined in Clause 6.If a signed SPDU does not meet the first three conditions and either the

fourth or the fifth, it is invalid.

5.2.3.2.2 Signature verification

If the signature on a signed SPDU does not pass cryptographic verification, the SPDU is invalid. Signature

generation and verification is specified in 5.3.1.

In the case of a signed SPDU signed with a certificate, the certificate to use to verify the signature is indicated

using the SignerIdentifier structure within the SignedData as specified in Clause 6.

In the case of a self-signed SPDU, the public key is not transported in the IEEE 1609.2 security envelope. In

this case, the means by which the receiving SDEE obtains the public key are part of the SDEE specification.

5.2.3.2.3 Consistency between signed SPDU and signing certificate

A signed SPDU that is signed with a certifiate contains the following information elements that are used

when determining validity:

 Required:

 Identifier of signing certificate

 Associated PSID

 One of: Encapsulated payload or hash of external payload

 Optional:

 Generation location (see 5.2.2)

 Generation time (see 5.2.2)

 Expiry time

The contents of a signed SPDU are fully specified in Clause 6.

The certificate used to sign a PDU is identified using the SignerIdentifier structure within the SignedData as

specified in Clause 6. This is one of: an identifier of the signing certificate, the signing certificate itself, or a

certificate chain including the end-entity certificate and a series of issuing certificates up to, but not including,

the root. If the SPDU contains an identifier of the signing certificate, the receiving SDS can only determine

validity of the SPDU if the certificate is locally stored and managed by the SSME.

A signed SPDU is consistent with the signing certificate if all the following hold:

 The signing certificate is an authorization certificate, i.e., it contains application permissions.

 The stated generation location, if present, is consistent within the geographic validity region indicated

in the certificate, i.e., one of the following conditions holds:

 Either the certificate is valid worldwide.

 Or the certificate has a geographic restriction, the SDEE specification states that the signed

SPDU contains a generation location, and the generation location is within the geographic

restriction.

 Or the certificate has a geographic restriction but the SDEE specification states that the SPDU

generation location is not used for consistency checks. (This can be stated using the 1609.2

security profile specified in Annex C.)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

38

 The generation time is available (either from the headers of the signed SPDU, or obtained by other

means such as from the SPDU payload by the SDEE and provided to the SDS) and is within the

validity period of the certificate.

 The expiry time, if present, is within the validity period of the certificate.

 The PSID that appears in the security envelope of the signed SPDU appears in the appPermissions

field of the certificate.

 The public key in or associated with the certificate can be used to cryptographically verify the

signature on the PDU.

A signed SPDU that is inconsistent with its signing certificate is invalid. A signed SPDU that is consistent

with its signing certificate is valid so long as the other validity conditions specified in this standard are

satisfied.

Figure 15 illustrates the necessary conditions for signed data to be consistent with the associated signing

certificate. The boxes within the data and certificate identify the information elements that are conveyed by

those data structures. For clarity, only the relevant fields within the data structures are shown. See Clause 9

for specification of processing that correctly performs these checks.

signer_id

application

permissions

Signing Certificate

permitted

geographic region
2

start validity time

expiry time

(start validity time +

duration)

public key
4

Issuer’s signature5

signer

payload

Signed PDU

PSID

transmission

location
3

generation time3

expiry time
3

(start validity time +

duration)

signature

contains

is equal to or before

is equal to or after

contains

is indicated by

verifies

NOTES:

1. Determined using the PSID and SSP. The process to determine whether the operational permissions permit the message payload is

specified by the organization reserving the PSID and is out of scope for this standard.

2. Included per policy set by the appropriate authority for the region where the certificate is being used.

3. Optional. Inclusion of this data is as determined by the organization reserving the PSID. This data may be contained in the payload or

within the security header fields.

4. For implicit certificates, the public key is derived rather than explicitly stated within the certificate.

5. Not included in an implicit certificate.

permits
1

signature

Figure 15 —Consistency of permissions between signed SPDU and signing certificate

5.2.3.2.4 Internal consistency in signed SPDU

If a signed SPDU contains a generation time and an expiry time, the PDU is inconsistent with itself and hence

invalid if the generation time is after the expiry time.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

39

5.2.3.3 SDEE-specific consistency conditions

5.2.3.3.1 General

SDEE-specific consistency conditions are:

 The Provider Service ID (PSID) in the SPDU is consistent with any other PSID that the SDEE

associates with the received PDU as specified in 5.2.3.3.2. This condition is checked by

Sec-SignedDataVerification.request if the SDEE so requests and provides the appropriate PSID in

that request.

 (If signed with a certificate) The payload of the PDU is consistent with the permissions (PSID, SSP,

assurance level) in the signing certificate as specified in 5.2.3.3.3. This condition cannot be verified

by the SDS and is intended to be verified by the receiving SDEE.

 Any external data included in the calculation of the signature has the correct hash value as specified

in 5.2.3.3.4. This condition cannot be verified by the SDS and is intended to be verified by the

receiving SDEE.

 (If signed with a certificate) The number of certificates in the full chain ending in the SPDU-signing

certificate is less than some SDEE-specific limit (see Annex C). This condition can be verified by

the SDS.

 (If signed with a ertificate) If the signed SPDU is making a statement about a geographic region other

than a single point, that region is contained within the validity region of the certificate as specified

in 5.2.3.3.5. This condition is not verified by the SDS and is intended to be verified by the receiving

SDEE.

If a signed SPDU does not meet all of these conditions it is invalid.

5.2.3.3.2 Consistency between PSID in signed SPDU and PSID derived from context

Depending on the context in which a signed SPDU is received, a SDEE might have access to metadata which

it can use to associate that signed SPDU with a PSID. As examples: (1) if the signed data was received within

the WAVE Short Message Protocol (WSMP) specified in IEEE Std 1609.3 with TPID = 0 or 1, the WSMP

header includes a PSID; (2) the SDEE might be associated with a one and only one PSID and therefore can

associate all received PDUs with that PSID. This PSID is referred to as a PSID derived from context.

As illustrated in Figure 15, the IEEE 1609.2 signed SPDU structure explicitly states the PSID with which the

creator intends the signed SPDU to be associated. This is referred to as the transmitted PSID.

A received signed SPDU is invalid unless the transmitted PSID is the same as the PSID derived from context.

The Sec-SignedDataVerification.request primitive specified in Clause 9 supports carrying out this check

within the SDS, even though it is SDEE-specific: the invoking SDEE provides the PSID derived from context

and the signed SPDU, and the SDS checks that the PSID derived from context is identical to the transmitted

PSID from the signed SPDU. In another possible implementation, this check may be realized directly by the

SDEE.

5.2.3.3.3 Consistency between SPDU payload and permissions: Service Specific
Permissions

A valid signed SPDU that is signed by a certificate satisfies the following conditions that address consistency

of the PDU payload with the sender’s permissions.

 The PDU payload is consistent with the PSID in the security envelope.

 The PDU payload is consistent with the relevant Service Specific Permissions (SSP) in the

authorization certificate, if any.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

40

 The PDU payload is consistent with the assurance level in the authorization certificate, if any.

Consistency between the payload and the certificate is SDEE-specific and outside the scope of this standard.

Consistency should be defined as part of the specification of the SDEE (i.e., the SDEE specification should

provide a map from the SSP values to the payload fields and their values that are permitted by each SSP

value) and checks for consistency should be implemented by the receiving SDEE.

The PSID, SSP, and assurance level are contained within the certificate as specified in 6.4.8. The certificate

format supports inclusion of multiple (PSID, SSP) pairs, but no PSID appears more than once in a valid

certificate, so the correct PSID can be unambiguously associated with a signed SPDU.

The Sec-SecureDataPreprocessing.request returns the PSID, SSP, and assurance level associated with a

signed SPDU.

For discussion of the use of the SSP and assurance level and the responsibilities of a PSID owner, see Annex

C.

5.2.3.3.4 External data

WAVE Security Services support generating a signed SPDU in which the signature calculation includes data

that is only indirectly included in the payload of the signed SPDU. In this case, the hash of the external data

is included. The signed SPDU is valid only if the external data indicated hashes to the value included in the

signed SPDU. How this data is defined, obtained, and shared between the sending and receiving SDEEs is

outside the scope of this standard.

5.2.3.3.5 Consistency between SPDU payload and permissions: Relevance region

If a signed SPDU was signed with a certificate, the generation location consistency conditions specified in

5.2.3.2.3 can be used to determine that a signed SPDU was generated in a location where the generating

SDEE is permitted to operate. However, depending on the application use case, generation location might

not need to be the subject of a consistency check, and there also might be other geographic information for

which it is appropriate to require authorization. An example of generation location not needing to be checked

is Certificate Revocation List (CRL) generation activity following the specification in clause 7; in this case,

the location at which the CRL is generated is not germane to whether or not the CRL is valid, and the CRL

could in fact be generated in a physical location that is outside any region that the revoked certificates would

have been valid in. An example of other geographic information for which it is appropriate to require

authorization is given by the Signal Phase and Timing (SPaT) message defined in SAE J2735 [B20]. In this

case, the SPaT message can include information about signal phase and timing at multiple intersections, and

it is appropriate to require that all the locations about which the message makes statements are permitted by

the certificate.

Consistency between relevance areas in the payload and the certificate is SDEE-specific and outside the

scope of this standard. The Sec-SecureDataPreprocessing.request returns the geographic region associated

with a certificate, and the SDEE is expected to carry out any consistency checks necessary to determine that

the payload is consistent with that geographic region. The 1609.2 security profile specified in Annex C can

be used to note that additional geographic consistency checks are to be carried out; however, the details of

these geographic consistency checks should be defined as part of the specification of the SDEE.

5.2.3.4 Identified Regions

If a signed SPDU was signed with a certificate, then per the consistency conditions specified in 5.1.2.4,

5.2.3.2.3, and 5.2.3.3.5, in a valid signed SPDU both of the conditions below hold:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

41

 The geographic validity regions in each subordinate certificate are consistent within the chain,

meaning that each validity region in a subordinate certificate is wholly contained in the validity

region of its issuing certificate.

 If so specified by the SDEE specification, the generation location or relevance region of the SPDU

is consistent with the validity region of the SDEE’s certificate, meaning that the generation location

or relevance region is respectively inside or wholly contained within that validity region.

This standard allows multiple approaches to indicate a validity region in a certificate. One of these approaches

is to include an identifier for the region in the certificate, such that the SDS maps from the region identifier

to a representation of the region which may be used for validity checking. The accuracy of this representation

is addressed below in this subclause.

The IdentifiedRegion identifier may be drawn from one of a number of dictionaries. The permitted

dictionaries are specified in 6.4.22 and the subclauses immediately thereafter.

The Protocol Implementation Conformance Statement (PICS) proforma given in Annex A allows the vendor

of an implementation of WAVE Security Services to state whether any identified regions are supported, and

to indicate which particular regions are supported in the sense that the WAVE Security Services have access

to a map from that identifier to a region representation.

In claiming support of a particular region identifier RId, contained in one of the supported dictionaries and

representing a region R, the PICS for an implementation is indicating that the following conditions hold:

 The region representation for R enables all consistency conditions with respect to identifiers in the

same dictionary to be carried out with respect to R, i.e.:

 In addition to supporting RId in this sense, the implementation supports all identifiers in the

dictionary that identify a region that fully contains R.

 For each region that fully contains R, the representation of the containing region fully contains

the representation of R.

 For each region that does not fully contain R, the representation of that region does not fully

contain the representation of R.

The 1609.2 security profile is provided to enable SDEE specifiers to specify whether the SDEE should use

the identified region type, and if so the representation accuracy requirements that apply (see Annex C).

5.2.4 Relevance conditions

5.2.4.1 General

The relevance conditions that apply to a received PDU are SDEE-specific. Relevance conditions are:

 Security service–verified relevance conditions: Relevance conditions that can be tested within the

SDS, such as whether the PDU is a replay of an previously received PDU, whether its generation

time is sufficiently recent, or whether its generation location is sufficiently local. See 5.2.4.2 for

further discussion.

 SDEE-verified relevance conditions: Other relevance conditions based on SDEE-specific criteria that

cannot be tested within the SDS. See 5.2.4.3 for further discussion.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

42

5.2.4.2 SDS-verified relevance conditions

5.2.4.2.1 General

The following relevance conditions depend on the local state of the receiving SDEE and can be checked by

the SDS. Whether or not any or all of these relevance conditions apply—and if they apply what parameters

are used with them—is SDEE-specific and is intended to be part of the SDEE specification. The 1609.2

security profile is provided to enable SDEE specifiers to specify the relevance conditions that apply (see

Annex C). The relevance conditions are specified in more detail in subsequent subclauses. A signed SPDU

received by a given SDEE is valid only if it is valid with respect to each of the relevance conditions

appropriate to that SDEE. The possible relevance conditions are as follows.

 Freshness: The signature generation time is not too far in the past, relative to the receiving SDS’s

estimate of the current time, for some definition of “too far in the past” given in the SDEE

specification.

 Future generation: The signature generation time is not (too far) in the future, relative to the

receiving SDS’s estimate of the current time, for some definition of “too far in the future” given in

the SDEE specification.

 Expiry: The signed data has not expired relative to the receiving SDS’s estimate of the current time.

Whether or not to carry out this check is specified in the SDEE specification.

 Location: The generation location is not too far away from the receiving SDS’s estimate of its

location, for some definition of “too far away” given in the SDEE specification.

 Replay: The PDU is not a replay of a PDU acted upon by that SDEE in the recent past, for some

PSID-specific definition of “the recent past”. Whether or not to carry out this check is specified in

the SDEE specification.

 Certificate expiry: For an SPDU signed with a certificate, none of the certificates in the full chain

ending with the certificate that signed the signed SPDU have expired relative to the receiving SDS’s

estimate of the current time. Whether or not to carry out this check is specified in the SDEE

specification.

The data structures defined in Clause 6 allow the information necessary to be transported either in the payload

of the signed data or in the security envelope.

The SDS supports testing against all of these conditions. The Sec-SignedDataVerification.request primitive

(see 9.3.12.1) allows the invoking SDEE to specify which of the conditions apply and the tolerance values

associated with freshness and location if those conditions are to be tested. Since replay detection pertains to

the same SPDU being processed twice by a single SDEE, the Sec-SignedDataVerification.request primitive

makes use of a SDEE identifier, which is assigned and managed by the SDS as defined in 9.2.1.

Figure 16 illustrates the fields to which relevance tests apply (the check for expired certificates is not

illustrated in Figure 16). The relevance and replay tests to be carried out are specified as inputs to

Sec-SignedDataVerification.request.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

43

Signed Data

PSID

generation location
1

generation time
1

expiry time
1

has this already been received?

NOTES:

1. This data may be contained in the payload or within the security header fields .

is this too far away?

has this time passed?

is this the expected value?

Figure 16 —Replay and relevance tests

5.2.4.2.2 Generation time too far in the past

The SDS provides the service of checking whether a signed SPDU received by an SDEE has a generation

time too far in the past. The 1609.2 security profile (see Annex C) is provided to enable an SDEE specification

to state whether this service is used by that SDEE and, if so, to provide a definition of “too far in the past”.

The SDS uses the following algorithm to check for a signed SPDU having been generated too far in the past.

The difference between the local estimate of time at which the SPDU was received and the estimated

generation time contained in that SPDU is calculated. If that difference exceeds V, the validity period

associated with PDUs of the same type as that received, the PDU is invalid. Otherwise, the PDU is valid with

respect to this relevance condition.

5.2.4.2.3 Generation time in the future

The SDS provides the service of checking whether a signed SPDU received by an SDEE has a generation

time too far in the future. The 1609.2 security profile (see Annex C) is provided to enable an SDEE

specification to state whether this service is used by that SDEE and, if so, to provide a definition of “too far

in the future”.

The SDS uses the following algorithm to check for a signed SPDU having been generated too far in the

future.

The difference between the local estimate of time at which the SPDU was received and the estimated

generation time contained in the SPDU is calculated. If that difference is less than zero, the PDU is invalid.

Otherwise, the PDU is valid with respect to this relevance condition.

5.2.4.2.4 Expiry time

The SDS provides the service of checking whether a signed SPDU received by an SDEE has passed some

expiry time stated in the SPDU. The 1609.2 security profile (see Annex C) is provided to enable an SDEE

specification to state whether this service is used by that SDEE.

The SDS uses the following algorithm to check for a signed SPDU having expired.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

44

The difference between the local estimate of time at which the SPDU was received and the expiry time

contained in that SPDU is calculated. If that difference is greater than zero, the PDU is invalid. Otherwise,

the PDU is valid with respect to this relevance condition.

5.2.4.2.5 Generation location too distant

The SDS provides the service of checking whether a signed SPDU received by an SDEE was generated too

far away. The 1609.2 security profile (see Annex C) is provided to enable an SDEE specification to state

whether this service is used by that SDEE and, if so, to provide the definition of “too far away”.

The SDS uses the following algorithm to check for a generation location being too far away.

The distance between the estimated generation location of the signed SPDU and the receiver’s estimated

location is calculated. If this distance is greater than D, the rejection threshold distance, the PDU is invalid.

Otherwise, the PDU is valid with respect to this relevance condition.

5.2.4.2.6 Replay

The SDS provides the service of checking whether a signed SPDU received by an SDEE is a replay, i.e.

whether it is a duplicate of a signed SPDU recently processed by the SDS for that SDEE. The 1609.2 security

profile (see Annex C) is provided to enable an SDEE specification to state whether this service is used by

that SDEE. The definition of “recently processed” is SDEE-specific, but it is a logically consistent choice for

this value to be the same as the value used to determine whether a SPDU has a generation time too far in the

past (see 5.2.4.2.1), and the interfaces defined in this standard enforce that the two values are the same.

The replay detection service is provided by SSME-Sec-ReplayDetection.request, SSME-Sec-

ReplayDetection.confirm. The replay detection service indicates that a signed SPDU is a replay if BOTH the

COER encoding of the tbsData field canonicalized according to the encoding considerations given in IEEE

1609.2 clause 6.3.6, AND the COER encoding of the Certificate that is to be used to verify the SPDU,

canonicalized according to the encoding considerations given in clause 6.4.3, are identical to those

information elements for another recently received SPDU.

Other replay detection techniques, such as ones based on the payload only or on the same data encoded in

different ways, are out of scope of this standard.

5.2.4.2.7 Certificate expiry

For an SPDU signed with a certificate, the SDS provides the service of checking whether any certificate in

the chain of that signed SPDU has expired at the time the SPDU is verified. The 1609.2 security profile (see

Annex C) is provided to enable an SDEE specification to state whether this service is used by that SDEE.

Annex C also provides discussion of how to establish whether certificate expiry detection is important for a

particular SDEE.

The SDS uses the following algorithm to determine whether the certificates in the chain of a signed SPDU

should be considered expired.

The pairwise difference between the local estimate of time at which the SPDU was received and the expiry

time in each certificate in the full chain that signed that SPDU is calculated. If any of those differences is

greater than zero, the PDU is invalid. Otherwise, the PDU is valid with respect to this relevance condition.

NOTE-- Certificates that have expired are risky to trust. It is strongly recommended that a signed SPDU

received after the expiry time of any certificate in its full chain be rejected.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

45

5.2.4.3 SDEE-verified relevance conditions (informative)

In addition to the relevance conditions that can be checked by the SDS, a SDEE specification could include

other relevance conditions (for example, PDUs whose sender is going to be out of range shortly, based on

their stated location and velocity, might be rejected; or the recent generation time condition could be checked

using just the local time estimate rather than the probability distribution function of the local time; or the

distance condition might use a more sophisticated distribution for the location). The SDS do not check these

relevance conditions and they do not need to be specified in the 1609.2 security profile for the PSID (see

Annex C).

5.2.5 Supported critical information fields

Critical information fields are any fields necessary to establish the validity of a signed SPDU. An

implementation of WAVE Security Services that cannot interpret critical information fields in a signed SPDU

or a certificate shall consider that signed SPDU or certificate to be invalid.

An implementation of WAVE Security Services might not be able to interpret critical information fields for

a number of reasons, including:

 The fields are too long.

 An array contains too many entries.

 A recursive structure contains too many recursions.

 A structure that uses identifiers includes an identifier that the implementation does not recognize.

For each data type defined in Clause 6 that may be of arbitrary length (in octets or number of entries), the

definition in Clause 6 specifies the circumstances under which it is a critical information field, and a

minimum size to be supported by any conformant implementation of WAVE Security Services. The Protocol

Implementation Conformance Statement (PICS) provided in Annex A allows an implementation to state any

size it supports beyond the minimum required for conformance.

5.3 Cryptographic operations

5.3.1 Signature algorithms

This standard specifies use of the Elliptic Curve Digital Signature Algorithm (ECDSA) specified in Federal

Information Processing Standard (FIPS) 186-4, optionally with the inclusion of additional information in the

signature as specified in SEC 1 Version 2.10

Three elliptic curves are specified for use with ECDSA: NIST P-256 as specified in FIPS 186-4, and

(brainpoolP256r1, brainpoolP384r1) as specified in RFC 5639. Data structures and encoding rules for data

objects associated with ECDSA are specified in Clause 6 of this standard and include an indication of which

curve is applicable. A conformant implementation that supports signing or verification shall support at least

one of these curves and may support more.

When data is hashed for signing or verification, the hash shall be created using the following rules:

a) The hash algorithm shall be one of the algorithms defined in 5.3.3.

b) The data shall have an assigned verification type, which is either certificate, indicating that the

message is to be verified with a certificate, or self-signed, indicating that it is to be identified with a

key embedded in the message itself (in this second case the message is also called “self-signed”).

10 The additional information may allow faster verification operations as described in SEC1 Version 2 and Antipa, et al. [B2].

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

46

c) The hash value input to the signing or verification process shall be:

Hash (Hash (Data input) || Hash (Signer identifier input))

where

1) Data input = the data to be signed

2) Signer identifier input depends on the verification type of the message

i) If the verification type is certificate, signer identifier input shall be the certificate with

which the message is to be verified, canonicalized as specified in 6.4.3.

ii) If the verification type is self-signed, signer identifier input shall be the empty string, i.e.,

a string of length 0.

The encoding of data for input to the hash process for signing PDUs is specified in 6.3.4.

The encoding of the certificate for input to the hash process is specified in 6.4.3 and 6.4.8.

The choice of verification type, and how it is indicated to a receiver, is specified in 6.3.25.

A primitive indicating the information that is passed to the signing operation is given in 9.3.9.1.

NOTE—This processing is different from that specified in Std 1609.2-2013: the hash input to the signature and

verification algorithm is calculated differently. Signatures calculated according to the process in this standard do not

verify with implementations of IEEE Std 1609.2-2013, and vice versa.11

5.3.2 Implicit certificates

In this standard, implicit certificates are processed as specified in Standards for Efficient Cryptography

(SEC) 4 with the exceptions noted in this subclause.

a) In this standard, an implicit certificate is an ImplicitCertificate, as defined in 6.4.5, encoded with the

Canonical Octet Encoding Rules (COER). All references to “the certificate CertU” in SEC 4 should

be taken as referring to the encoded ImplicitCertificate except in the instance the implicit certificate

is hashed to an integer modulo n; this case is addressed in item b) below.

b) When an implicit certificate is hashed to an integer modulo n, the input is not simply the implicit

certificate CertU but the information specified below. This affects the following steps in SEC 4:

1) Section 3.4, Action 7

2) Section 3.5, Action 4

3) Section 3.6, Action 2

4) Section 3.7, Action 4

5) Section 3.8, Action 4

The encoded data input to the hash function is Hash (ToBeSignedCertificate from the subordinate

certificate as specified in 6.4.8, canonicalized as specified in 6.4.3) || Hash (Entirety of issuer

certificate, canonicalized as specified in 6.4.3).

c) SHA-256 shall be used as the Hash algorithm H.

11 Notes in text, tables, and figures of a standard are given for information only and do not contain requirements needed

to implement this standard.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

47

d) Within the integer hash function Hn, the output of the hash function H is not converted to an integer

mod n using the mechanism specified in SEC 4, section 2.3. Instead, the hash function is converted

to an integer by taking the 256-bit output from SHA-256, converting that bit string to an octet string

using the Bit String To Octet String Conversion Primitive of SEC 1, and then converting that octet

string to an integer using the Octet String To Integer Conversion Primitive of SEC 1.

This standard defines implicit certificates over the curves NIST P-256 and brainpoolP256r1. This standard

does not define certificates over the curve brainpoolP384r1.

SHA-256 shall be used as the Hash algorithm H used by the integer hash Hn specified in SEC 4, section 2.3.

The private key is judged as valid or invalid relative to an implicit certificate using the techniques of SEC 4

section 3.6.

5.3.3 Hash algorithms: SHA-256, SHA-384

The hash algorithms approved for use in this standard are SHA-256 and SHA-384 as specified in the Federal

Information Processing Standard (FIPS) 180-4. In this standard, the phrase “the SHA-256 (resp. SHA-384)

hash of [an octet string]” is used to mean “the hash of [that octet string] obtained using SHA-256 (resp. SHA-

384) as specified in FIPS 180-4”.

5.3.4 Encrypted data

The SDS generates encrypted data in one of two ways, the ephemeral data encryption key approach or the

static data encryption key approach.

5.3.4.1 Ephemeral data encryption key approach

In the ephemeral data encryption key approach:

 The plaintext P has the form of a valid encoded Ieee1609Dot2Data structure.

 P is encrypted with a freshly and randomly generated symmetric data encryption key k for an

approved symmetric algorithm as specified in 5.3.8, to obtain a ciphertext C. If the approved

symmetric algorithm uses a nonce, that nonce is generated freshly and at random.

 The ciphertext C is encoded as a SymmetricCiphertext.

 For each recipient key:

 The data encryption key k is encrypted with the recipient key to obtain an encrypted data

encryption key ek.

 The encrypted data encryption key ek is encoded in a RecipientInfo of the type determined by

the type of the recipient’s encryption key as specified in 6.3.33.

 The RecipientInfo structures and SymmetricCiphertext are encoded in an EncryptedData structure

which in turn is encoded in an Ieee1609Dot2Data structure.

A single input PDU is encrypted for one or more public or symmetric keys, resulting in a single encrypted

PDU that may be decrypted by the holder or holders of the decryption key corresponding to any of the

encryption keys. Each of the encryption keys used is referred to as a recipient key and the owner of the

corresponding decryption key is referred to as a recipient. A public key used for encryption could have been

obtained by the encrypter from the recipient’s certificate, from the encryptionKey field in a SignedData,

or by some other means. If a certificate does not contain an encryption key, it cannot be used to encrypt a

PDU for its holder. This standard does not specify how an encrypter obtains a symmetric key to use for

encryption.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

48

The cryptographic processing for encryption with the public key varies depending on the source of the public

key; see 5.3.5 for details.

If the recipient key is a symmetric key, the data encryption key is encrypted with the symmetric key as

specified in 5.3.8 and the relevant RecipientInfo is of type SymmRecipientInfo.

5.3.4.2 Static data encryption key approach

In the static data encryption key approach:

 The plaintext P has the form of a valid encoded Ieee1609Dot2Data structure.

 P is encrypted with a previously agreed symmetric data encryption key k for an approved symmetric

algorithm as specified in 5.3.8, to obtain a ciphertext C. If the approved symmetric algorithm uses a

nonce, that nonce is generated freshly and at random.

 The ciphertext C is encoded as a SymmetricCiphertext.

 An indicator of the key k is included in a RecipientInfo of type PreSharedKeyRecipientInfo.

 The RecipientInfo and SymmetricCiphertext are encoded in an EncryptedData structure which in

turn is encoded in an Ieee1609Dot2Data structure.

5.3.5 Public key encryption algorithms: ECIES

The only asymmetric encryption algorithm specified in this standard is the Elliptic Curve Integrated

Encryption Scheme (ECIES) as specified in IEEE Std 1363a. This standard supports the use of ECIES to

encrypt ephemeral data encryption keys as specified in 5.3.4.1 and does not support the use of ECIES to

encrypt data directly.

Two elliptic curves are specified for use with ECIES: NIST P-256 as specified in FIPS 186-4, and

brainpoolP256r1 as specified in RFC 5639.

When encrypting with ECIES, the following constraints on the specification in IEEE Std 1363a shall be

applied.

NOTE—IEEE Std 1363a specifies the use of ECIES to encrypt data; in this standard, as noted above, ECIES is used only

to encrypt symmetric keys. In the bulleted list below the word “data” is used to describe the plaintext input to encryption

for consistency with IEEE Std 1363a, even though in the case of this standard the input is in fact a key.

a) The secret value derivation primitive shall be Elliptic Curve Secret Value Derivation Primitive–Diffie-

Hellman version with cofactor multiplication (ECSVDP-DHC).

b) Compatibility with the corresponding –DH primitive shall not be desired.

c) The data encryption method shall be a stream cipher based on Key Derivation Function 2 (KDF2)

which shall be parameterized by the choice:

 Hash = SHA-256

 P1: recipient information, see below

d) The data authentication code shall be MAC1 which shall be parameterized by the choices:

 Input key length = 256 bits

 Hash = SHA-256

 tBits = 128

 P2 = the empty string

e) Encryption shall use non-DHAES mode.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

49

f) Data structures and encoding rules for data objects associated with ECIES are specified in Clause 6

of this standard and include an indication of which curve is used.

The ephemeral public key V shall be freshly generated for each encryption operation, i.e. an encryption

operation shall not reuse an ephemeral public key V.

The parameter P1 is a hash of the information that was bound to the ECIES key used for the encryption:

 If the encryption key was obtained from a certificate c, P1 is SHA-256 (c), where c is the COER

encoding of the certificate, canonicalized per 6.4.3.

 If the encryption key was obtained from a SignedData within an Ieee1609Dot2Data d (i.e., the

encryption key is d.signedData.tbsData.headerInfo.encryptionKey.public), P1 is

SHA-256 (d), where d is the COER encoding of the Ieee1609Dot2Data, canonicalized per 6.3.4.

 If the encryption key was obtained from a different source, P1 is SHA-256 (“”, the empty string).

How a SDEE obtains encryption keys, and which form the parameter P1 takes, is SDEE-specific. See Annex

C.7 for guidance on when different approaches to obtaining the encryption key may be appropriate. The data

structures in clause 6 allow the sender of an encrypted message to indicate the source of the encryption key

to the recipient.

The output of this encryption is a triple (V, C, tag), where:

 V is an octet string representing the sender’s ephemeral public key.

 C is the encrypted symmetric key.

 tag is the authentication tag.

Example test vectors for ECIES are provided in D.6.2.

Example test vectors for MAC1 are provided in D.6.3.

Example test vectors for KDF2 are provided in D.6.4.

5.3.6 Key pair generation

Key pairs for ECDSA or ECIES shall be generated according to the specification in Annex B.4 of FIPS 186-

4. Implementations should use a high-quality random number generator to generate the key pair such as those

used by NIST [B15].

5.3.7 Key pair validity

For ECDSA and ECIES, a key pair is judged to be valid or invalid relative to the criteria in subclause 7.1.3

and Annex A.16.10 of IEEE Std 1363™-2000.

5.3.8 Symmetric algorithms: AES-CCM

The only symmetric algorithm specified for use in this standard is the Advanced Encryption Standard (AES)

in Counter Mode with Cipher Block Chaining Message Authentication Code (CCM) mode as specified in

National Institute for Standards and Technology (NIST) Special Publication (SP) 800-38C.

The ciphertext shall be calculated according to the specification of AES-CCM in NIST SP 800-38C.

The formatting mechanism used shall be the one specified in Appendix A.2 of NIST SP 800-38C, with the

following specific choices:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

50

Control information and nonce (A.2.1): There is no associated data, so Adata = 0. The message

authentication code length Tlen shall be 128 bits (16 octets). The octet length of the nonce N shall be 12,

leaving three octets to encode the length of the data. The nonce is generated freshly at random for every

invocation of AES-CCM to encrypt.

Formatting of the associated data (A.2.2): There shall be no associated data.

The counter block generation mechanism used shall be the one specified in Appendix A.3 of NIST SP

800-38C.

The input to AES-CCM encryption with no associated data is the nonce N and the payload P of length Plen

bits. The output is the ciphertext C of length Clen = Plen + Tlen bits.

On decryption using the mechanisms of NIST SP 800-3C, the nonce N shall be set equal to the contents of

the nonce field; the ciphertext C shall be set equal to the contents of the ciphertext field; and the

ciphertext length Clen shall be set equal to eight times the encoded length of the ciphertext field.

Example AES-CCM test vectors are provided in D.6.1

6. Data structures

6.1 Presentation and encoding

Data structures in this standard are defined using Abstract Syntax Notation 1 (ASN.1) as defined in ITU-T

X.680.

The data structures defined in this clause shall be encoded using the Canonical Octet Encoding Rules (COER)

as defined in ITU-T X.696.

There are some data structures in this standard for which a “canonical encoding” is defined. This is the

encoding to be used whenever the structures are to be encoded for processing by a cryptographic hash

function. In general, these are structures that include the output of some cryptographic operation, for which

the generator of the structure may choose either to include additional information to speed up receive-side

processing, or to omit that additional information and reduce the transmitted packet size.. Any structure for

which encoding is subject to canonicalization has a paragraph entitled Encoding considerations in its

description in Clause 6.

The complete IEEE 1609.2 ASN.1 modules are given in Annex B. In the event of a conflict between Annex

B and this clause, this clause takes precedence.

6.2 Basic types

The following atomic types are used in the data structure definitions:

 Uint3 ::= INTEGER (0..7) -- (hex) 07

 Uint8 ::= INTEGER (0..255) -- (hex) ff

 Uint16 ::= INTEGER (0..65535) -- (hex) ff ff

 Uint32 ::= INTEGER (0..4294967295) -- (hex) ff ff ff ff

 Uint64 ::= INTEGER (0..18446744073709551615)

 -- (hex) ff ff ff ff ff ff ff ff

 IValue ::= Uint16

The following synonym for OCTET STRING is used in the data structure definitions:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

51

 Opaque ::= OCTET STRING

The following structures are used for clarity of definitions:

 SequenceOfOctetString ::= SEQUENCE (SIZE (0..MAX)) OF

 OCTET STRING (SIZE(0..MAX))

 SequenceOfUint8 ::= SEQUENCE OF Uint8

 SequenceOfUint16 ::= SEQUENCE OF Uint16

6.3 Secured protocol data units (SPDUs)

6.3.1 General

Subclause 6.3 specifies the secured protocol data unit (SPDU) structures created and consumed by the SDS.

A SPDU is an Ieee1609Dot2Data as defined in 6.3.

The order in which the structures are defined below is hierarchical based on the first use in a prior structure.

For example, in 6.2.2 Ieee1609Dot2Data is defined using several structures, of which the first three are

Opaque (a synonym for OCTET STRING, see 6.2), SignedData, and EncryptedData. Subsequently, Signed-

Data is defined in 6.3.4, and EncryptedData is defined in 6.3.32. The subclauses between 6.3.4 and 6.3.32

are used to define structures used within SignedData, and so on. (Exceptions are the fields associated with

MissingCrlIdentifier, which are defined in 7.3 in order to keep all CRL-related fields in one place).

Additionally, in the electronic version of the standard, all uses of a structure name are hyperlinked to the title

of the subclause that defines the structure.

6.3.2 Ieee1609Dot2Data

 Ieee1609Dot2Data ::= SEQUENCE {

 protocolVersion Uint8(3),

 content Ieee1609Dot2Content

 }

This data type is used to contain the other data types in this clause. The fields in the Ieee1609Dot2Data have

the following meanings:

 protocolVersion contains the current version of the protocol. The version specified in this

document is version 3, represented by the integer 3. There are no major or minor version numbers.

 content contains the content in the form of an Ieee1609Dot2Content.

6.3.3 Ieee1609Dot2Content

 Ieee1609Dot2Content ::= CHOICE {

 unsecuredData Opaque,

 signedData SignedData,

 encryptedData EncryptedData,

 signedCertificateRequest Opaque,

 ...

 }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

52

In this structure:

 unsecuredData indicates that the content is an OCTET STRING to be consumed outside the

SDS.

 signedData indicates that the content has been signed according to this standard.

 encryptedData indicates that the content has been encrypted according to this standard.

 signedCertificateRequest indicates that the content is a certificate request. Further

specification of certificate requests is not provided in this version of this standard.

Critical information fields: This is not a critical information field as defined in 5.2.5.

6.3.4 SignedData

 SignedData ::= SEQUENCE {

 hashId HashAlgorithm,

 tbsData ToBeSignedData,

 signer SignerIdentifier,

 signature Signature

 }

In this structure:

 hashId indicates the hash algorithm to be used to generate the hash of the message for signing and

verification.

 tbsData contains the data that is hashed as input to the signature.

 signer determines the keying material and hash algorithm used to sign the data.

 signature contains the digital signature itself, calculated as specified in 5.3.1.

 If signer indicates the choice self, then the signature calculation is parameterized as

follows:

 Data input is equal to the COER encoding of the tbsData field canonicalized according

to the encoding considerations given in 6.3.6.

 Verification type is equal to self.

 Signer identifier input is equal to the empty string.

 If signer indicates certificate or digest, then the signature calculation is

parameterized as follows:

 Data input is equal to the COER encoding of the tbsData field canonicalized according

to the encoding considerations given in 6.3.6.

 Verification type is equal to certificate.

 Signer identifier input is equal to the COER encoding of the Certificate that is to

be used to verify the SPDU, canonicalized according to the encoding considerations given

in 6.4.3.

6.3.5 HashAlgorithm

 HashAlgorithm ::= ENUMERATED {

 sha256,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

53

 ...,

 sha384

 }

This structure identifies a hash algorithm. The value sha256 indicates SHA-256 as specified in 5.3.3. The

value sha384 indicates SHA-384 as specified in 5.3.3.

Critical information fields: This is a critical information field as defined in 5.2.5. An implementation that

does not recognize the enumerated value of this type in a signed SPDU when verifying a signed SPDU shall

indicate that the signed SPDU is invalid.

6.3.6 ToBeSignedData

 ToBeSignedData ::= SEQUENCE {

 payload SignedDataPayload,

 headerInfo HeaderInfo

 }

This structure contains the data to be hashed when generating or verifying a signature. See 6.3.4 for the

specification of the input to the hash.

 payload contains data that is provided by the entity that invokes the SDS.

 headerInfo contains additional data that is inserted by the SDS.

Encoding considerations: For encoding considerations associated with the headerInfo field, see 6.3.9.

6.3.7 SignedDataPayload

 SignedDataPayload ::= SEQUENCE {

 data Ieee1609Dot2Data OPTIONAL,

 extDataHash HashedData OPTIONAL,

 ...

 }

 (WITH COMPONENTS {..., data PRESENT} |

 WITH COMPONENTS {..., extDataHash PRESENT})

This structure contains the data payload of a ToBeSignedData. This structure contains at least one of data

and extDataHash, and may contain both.

 data contains data that is explicitly transported within the structure.

 extDataHash contains the hash of data that is not explicitly transported within the structure, and

which the creator of the structure wishes to cryptographically bind to the signature. For example, if

a creator wanted to indicate that some large message was still valid, they could use the

extDataHash field to send a SignedData containing the hash of that large message without having

to resend the message itself. Whether or not extDataHash is used, and how it is used, is SDEE-

specific.

6.3.8 HashedData

 HashedData::= CHOICE {

 sha256HashedData OCTET STRING (SIZE(32)),

 ...

 }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

54

This structure contains the hash of some data with a specified hash algorithm. The only hash algorithm

supported in this version of this standard is SHA-256.

Critical information fields: If present, this is a critical information field as defined in 5.2.5. An

implementation that does not recognize the indicated CHOICE for this type when verifying a signed SPDU

shall indicate that the signed SPDU is invalid.

6.3.9 HeaderInfo

 HeaderInfo ::= SEQUENCE {

 psid Psid,

 generationTime Time64 OPTIONAL,

 expiryTime Time64 OPTIONAL,

 generationLocation ThreeDLocation OPTIONAL,

 p2pcdLearningRequest HashedId3 OPTIONAL,

 missingCrlIdentifier MissingCrlIdentifier OPTIONAL,

 encryptionKey EncryptionKey OPTIONAL,

 ...

 inlineP2pcdRequest SequenceOfHashedId3 OPTIONAL,

 requestedCertificate Certificate OPTIONAL,

 }

This structure contains information that is used to establish validity by the criteria of 5.2.

 psid indicates the application area with which the sender is claiming the payload should be

associated.

 generationTime indicates the time at which the structure was generated. See 5.2.4.2.2 and

5.2.4.2.3 for discussion of the use of this field.

 expiryTime, if present, contains the time after which the data should no longer be considered

relevant. If both generationTime and expiryTime are present, the signed SPDU is invalid if

generationTime is not strictly earlier than expiryTime.

 generationLocation, if present, contains the location at which the signature was generated.

 p2pcdLearningRequest, if present, is used by the SDS to request certificates for which it has

seen identifiers but does not know the entire certificate. A specification of this peer-to-peer certificate

distribution (P2PCD) mechanism is given in Clause 8. This field is used for the out-of-band flavor

of P2PCD and shall only be present if inlineP2pcdRequest is not present. The HashedId3 is

calculated with the whole-certificate hash algorithm, determined as described in 6.4.3.

 missingCrlIdentifier, if present, is used by the SDS to request CRLs which it knows to have

been issued but has not received. This is provided for future use and the associated mechanism is not

defined in this version of this standard.

 encryptionKey, if present, is used to indicate that a further communication should be encrypted

with the indicated key. One possible use of this key to encrypt a response is specified in 6.3.33,

6.3.34, and 6.3.36. An encryptionKey field of type symmetric should only be used if the Signed-

Data containing this field is securely encrypted by some means.

 inlineP2pcdRequest, if present, is used by the SDS to request unknown certificates per the

inline peer-to-peer certificate distribution mechanism is given in Clause 8. This field shall only be

present if p2pcdLearningRequest is not present. The HashedId3 is calculated with the whole-

certificate hash algorithm, determined as described in 6.4.3.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

55

 requestedCertificate, if present, is used by the SDS to provide certificates per the “inline”

version of the peer-to-peer certificate distribution mechanism given in Clause 8.

Encoding considerations: When the structure is encoded in order to be digested to generate or check a

signature, if encryptionKey is present, and indicates the choice public, and contains a

BasePublicEncryptionKey that is an elliptic curve point (i.e., of typeEccP256CurvePoint or

EccP384CurvePoint), then the elliptic curve point is encoded in compressed form, i.e., such that the choice

indicated within the Ecc*CurvePoint is compressed-y-0 or compressed-y-1.

6.3.10 Psid

 Psid ::= INTEGER (0..MAX)

This type represents the PSID defined in IEEE Std 1609.12.

6.3.11 Time64

 Time64 ::= Uint64

This data structure is a 64-bit integer giving an estimate of the number of (TAI) microseconds since 00:00:00

UTC, 1 January, 2004.

6.3.12 ThreeDLocation

 ThreeDLocation ::= SEQUENCE {

 latitude Latitude,

 longitude Longitude,

 elevation Elevation

 }

This data structure contains an estimate of 3D location. The details of the structure are given in the definitions

of the individual fields below.

NOTE—The units used in this data structure are consistent with the location data structures used in SAE J2735 [B20],

though the encoding is incompatible.

6.3.13 Latitude

 Latitude ::= NinetyDegreeInt

 NinetyDegreeInt ::= INTEGER {

 min (-900000000),

 max (900000000),

 unknown (900000001)

 } (-900000000..900000001)

 KnownLatitude ::= NinetyDegreeInt (min..max)

 -- Minus 90deg to +90deg in .1 microdegree intervals

 UnknownLatitude ::= NinetyDegreeInt (unknown)

The latitude field contains an INTEGER encoding an estimate of the latitude with precision 1/10th

microdegree relative to the World Geodetic System (WGS)-84 datum as defined in NIMA Technical Report

TR8350.2.

The integer in the latitude field is no more than 900 000 000 and no less than −900 000 000, except that

the value 900 000 001 is used to indicate the latitude was not available to the sender.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

56

6.3.14 Longitude

 Longitude ::= OneEightyDegreeInt

 OneEightyDegreeInt ::= INTEGER {

 min (-1799999999),

 max (1800000000),

 unknown (1800000001)

 } (-1799999999..1800000001)

 KnownLongitude ::= OneEightyDegreeInt (min..max)

 UnknownLongitude ::= OneEightyDegreeInt (unknown)

The longitude field contains an INTEGER encoding an estimate of the longitude with precision 1/10th

microdegree relative to the World Geodetic System (WGS)-84 datum as defined in NIMA Technical Report

TR8350.2.

The integer in the longitude field is no more than 1 800 000 000 and no less than −1 799 999 999, except

that the value 1 800 000 001 is used to indicate that the longitude was not available to the sender.

6.3.15 Elevation

 Elevation ::= ElevInt

 ElevInt ::= Uint16

The elevation field contains an estimate of the geodetic altitude above or below the WGS84 ellipsoid.

The 16-bit value is interpreted as an integer number of decimeters representing the height above a minimum

height of −409.5 m, with the maximum height being 6143.9 m.

6.3.16 MissingCrlIdentifier

 MissingCrlIdentifier ::= SEQUENCE {

 cracaId HashedId3,

 crlSeries CrlSeries,

 ...

 }

This structure may be used to request a CRL that the SSME knows to have been issued but has not yet

received. It is provided for future use and its use is not defined in this version of this standard.

 cracaId is the HashedId3 of the CRACA, as defined in 5.1.3. The HashedId3 is calculated with

the whole-certificate hash algorithm, determined as described in 6.4.3.

 crlSeries is the requested CRL Series value. See 5.1.3 for more information.

6.3.17 CrlSeries

 CrlSeries ::= Uint16

This integer identifies a series of CRLs issued under the authority of a particular CRACA.

6.3.18 EncryptionKey

 EncryptionKey ::= CHOICE {

 public PublicEncryptionKey,

 symmetric SymmetricEncryptionKey

 }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

57

This structure contains an encryption key, which may be a public or a symmetric key.

6.3.19 SymmetricEncryptionKey

 SymmetricEncryptionKey ::= CHOICE {

 aes128Ccm OCTET STRING(SIZE(16)),

 ...

 }

This structure provides the key bytes for use with an identified symmetric algorithm. The only supported

symmetric algorithm is AES-128 in CCM mode as specified in 5.3.8.

6.3.20 PublicEncryptionKey

 PublicEncryptionKey ::= SEQUENCE {

 supportedSymmAlg SymmAlgorithm,

 publicKey BasePublicEncryptionKey

 }

This structure specifies a public encryption key and the associated symmetric algorithm which is used for

bulk data encryption when encrypting for that public key.

6.3.21 SymmAlgorithm

 SymmAlgorithm ::= ENUMERATED {

 aes128Ccm,

 ...

 }

This enumerated value indicates supported symmetric algorithms. The only symmetric algorithm supported

in this version of this standard is AES-CCM as specified in 5.3.8.

6.3.22 BasePublicEncryptionKey

 BasePublicEncryptionKey ::= CHOICE {

 eciesNistP256 EccP256CurvePoint,

 eciesBrainpoolP256r1 EccP256CurvePoint,

 ...

 }

This structure specifies the bytes of a public encryption key for a particular algorithm. The only algorithm

supported is ECIES over either the NIST P256 or the Brainpool P256r1 curve as specified in 5.3.5.

6.3.23 EccP256CurvePoint

 EccP256CurvePoint::= CHOICE {

 x-only OCTET STRING (SIZE (32)),

 fill NULL, -- consistency w 1363 / X9.62

 compressed-y-0 OCTET STRING (SIZE (32)),

 compressed-y-1 OCTET STRING (SIZE (32)),

 uncompressedP256 SEQUENCE {

 x OCTET STRING (SIZE (32)),

 y OCTET STRING (SIZE (32))

 }

 }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

58

This structure specifies a point on an elliptic curve in Weierstrass form defined over a 256-bit prime number.

This encompasses both NIST p256 as defined in FIPS 186-4 and Brainpool p256r1 as defined in RFC 5639.

The fields in this structure are OCTET STRINGS produced with the elliptic curve point encoding and

decoding methods defined in subclause 5.5.6 of IEEE Std 1363-2000. The x-coordinate is encoded as an

unsigned integer of length 32 octets in network byte order for all values of the CHOICE; the encoding of the

y-coordinate y depends on whether the point is x-only, compressed, or uncompressed. If the point is x-only,

y is omitted. If the point is compressed, the value of type depends on the least significant bit of y: if the

least significant bit of y is 0, type takes the value compressed-y-0, and if the least significant bit of y is

1, type takes the value compressed-y-1. If the point is uncompressed, y is encoded explicitly as an

unsigned integer of length 32 octets in network byte order.

6.3.24 EccP384CurvePoint

 EccP384CurvePoint::= CHOICE {

 x-only OCTET STRING (SIZE (48)),

 fill NULL, -- consistency w 1363 / X9.62

 compressed-y-0 OCTET STRING (SIZE (48)),

 compressed-y-1 OCTET STRING (SIZE (48)),

 uncompressedP384 SEQUENCE {

 x OCTET STRING (SIZE (48)),

 y OCTET STRING (SIZE (48))

 }

 }

This structure specifies a point on an elliptic curve in Weierstrass form defined over a 384-bit prime number.

The only supported such curve in this standard is Brainpool p384r1 as defined in RFC 5639. The fields in

this structure are OCTET STRINGS produced with the elliptic curve point encoding and decoding methods

defined in subclause 5.5.6 of IEEE Std 1363-2000. The x-coordinate is encoded as an unsigned integer of

length 48 octets in network byte order for all values of the CHOICE; the encoding of the y-coordinate y

depends on whether the point is x-only, compressed, or uncompressed. If the point is x-only, y is omitted. If

the point is compressed, the value of type depends on the least significant bit of y: if the least significant

bit of y is 0, type takes the value compressed-y-0, and if the least significant bit of y is 1, type takes the

value compressed-y-1. If the point is uncompressed, y is encoded explicitly as an unsigned integer of

length 48 octets in network byte order.

6.3.25 SignerIdentifier

 SignerIdentifier ::= CHOICE {

 digest HashedId8,

 certificate SequenceOfCertificate,

 self NULL,

 ...

 }

This structure allows the recipient of data to determine which keying material to use to authenticate the data.

It also indicates the verification type to be used to generate the hash for verification, as specified in 5.3.1.

 If the choice indicated is digest:

 The structure contains the HashedId8 of the relevant certificate. The HashedId8 is calculated

with the whole-certificate hash algorithm, determined as described in 6.4.3.

 The verification type is certificate and the certificate data passed to the hash function as

specified in 5.3.1 is the authorization certificate.

 If the choice indicated is certificate:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

59

 The structure contains one or more Certificate structures, in order such that the first certificate

is the authorization certificate and each subsequent certificate is the issuer of the one before it.

 The verification type is certificate and the certificate data passed to the hash function as

specified in 5.3.1 is the authorization certificate.

 If the choice indicated is self:

 The structure does not contain any data beyond the indication that the choice value is self.

 The verification type is self-signed.

Critical information fields:

a) If present, this is a critical information field as defined in 5.2.5. An implementation that does not

recognize the CHOICE value for this type when verifying a signed SPDU shall indicate that the

signed SPDU is invalid.

b) If present, certificate is a critical information field as defined in 5.2.5. An implementation that

does not support the number of certificates in certificate when verifying a signed SPDU shall

indicate that the signed SPDU is invalid. A compliant implementation shall support certificate

fields containing at least one certificate.

6.3.26 HashedId3

 HashedId3 ::= OCTET STRING (SIZE(3))

 SequenceOfHashedId3 ::= SEQUENCE OF HashedId3

This data structure contains the truncated hash of another data structure. The HashedId3 for a given data

structure is calculated by calculating the hash of the encoded data structure and taking the low-order three

bytes of the hash output. If the data structure is subject to canonicalization it is canonicalized before hashing.

The low-order three bytes are the last three bytes of the hash when represented in network byte order. See

Example below.

The hash algorithm to be used to calculate a HashedId3 within a structure depends on the context. In this

standard, for each structure that includes a HashedId3 field, the corresponding text indicates how the hash

algorithm is determined.

Example: Consider the SHA-256 hash of the empty string:
SHA-256(“”) =

e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

The HashedId3 of this hash was highlighted above and corresponds to the following:
HashedId3 = 52b855.

6.3.27 HashedId8

 HashedId8 ::= OCTET STRING (SIZE(8))

This data structure contains the truncated hash of another data structure. The HashedId8 for a given data

structure is calculated by calculating the hash of the encoded data structure and taking the low-order eight

bytes of the hash output. If the data structure is subject to canonicalization it is canonicalized before

hashing. The low-order eight bytes are the last eight bytes of the hash when represented in network byte

order. See Example below.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

60

The hash algorithm to be used to calculate a HashedId8 within a structure depends on the context. In this

standard, for each structure that includes a HashedId8 field, the corresponding text indicates how the hash

algorithm is determined.

Example: Consider the SHA-256 hash of the empty string:
SHA-256(“”) =

e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

The HashedId8 of this hash was highlighted above and corresponds to the following:
HashedId8 = a495991b7852b855.

6.3.28 HashedId10

 HashedId10 ::= OCTET STRING (SIZE(10))

This data structure contains the truncated hash of another data structure. The HashedId10 for a given data

structure is calculated by calculating the hash of the encoded data structure and taking the low-order ten

bytes of the hash output. If the data structure is subject to canonicalization it is canonicalized before

hashing.The low-order ten bytes are the last ten bytes of the hash when represented in network byte order.

See Example below.

The hash algorithm to be used to calculate a HashedId10 within a structure depends on the context. In this

standard, for each structure that includes a HashedId10 field, the corresponding text indicates how the hash

algorithm is determined.

Example: Consider the SHA-256 hash of the empty string:
SHA-256(“”) =

e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

The HashedId10 of this hash was highlighted above and corresponds to the following:
HashedId10 = 934ca495991b7852b855.

6.3.29 Signature

 Signature ::= CHOICE {

 ecdsaNistP256Signature EcdsaP256Signature,

 ecdsaBrainpoolP256r1Signature EcdsaP256Signature,

 ...,

 ecdsaBrainpoolP384r1Signature EcdsaP384Signature,

 }

This structure represents a signature for a supported public key algorithm. It may be contained within Signed-

Data or Certificate.

Critical information fields: If present, this is a critical information field as defined in 5.2.5. An

implementation that does not recognize the indicated CHOICE for this type when verifying a signed SPDU

shall indicate that the signed SPDU is invalid.

6.3.30 EcdsaP256Signature

 EcdsaP256Signature ::= SEQUENCE {

 rSig EccP256CurvePoint,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

61

 sSig OCTET STRING (SIZE (32))

 }

This structure represents an ECDSA signature. The signature is generated as specified in 5.3.1.

If the signature process followed the specification of FIPS 186-4 and output the integer r, r is represented as

an EccP256CurvePoint indicating the selection x-only.

If the signature process followed the specification of SEC 1 and output the elliptic curve point R to allow for

fast verification, R is represented as an EccP256CurvePoint indicating the choice compressed-y-0,

compressed-y-1, or uncompressed at the sender’s discretion.12

Encoding considerations: If this structure is encoded for hashing, the EccP256CurvePoint in rSig shall

be taken to be of form x-only.

NOTE— When the signature is of form x-only, the x-value in rSig is an integer mod n, the order of the

group; when the signature is of form compressed-y-*, the x-value in rSig is an integer mod p, the

underlying prime defining the finite field. In principle this means that to convert a signature from form

compressed-y-* to form x-only, the x-value should be checked to see if it lies between n and p and

reduced mod n if so. In practice this check is unnecessary: Haase’s Theorem states that difference between n

and p is always less than 2p, and so the chance that an integer lies between n and p, for a 256-bit curve, is

bounded above by approximately p/p or 2-128. For the 256-bit curves in this standard, the exact values of n

and p in hexadecimal are:

NISTp256:

 p = FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF

 n = FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551

Brainpoolp256:

 p = A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377

 n = A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7

6.3.31 EcdsaP384Signature

 EcdsaP384Signature ::= SEQUENCE {

 rSig EccP384CurvePoint,

 sSig OCTET STRING (SIZE (48))

 }

This structure represents an ECDSA signature. The signature is generated as specified in 5.3.1.

If the signature process followed the specification of FIPS 186-4 and output the integer r, r is represented as

an EccP384CurvePoint indicating the selection x-only.

12 The compressed forms give some performance advantage on verification compared to the x-only form, at the same packet size as

the x-only form; the uncompressed form gives a greater performance advantage at the cost of increased packet size.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

62

If the signature process followed the specification of SEC 1 and output the elliptic curve point R to allow for

fast verification, R is represented as an EccP384CurvePoint indicating the choice compressed-y-0,

compressed-y-1, or uncompressed at the sender’s discretion.13

Encoding considerations: If this structure is encoded for hashing, the EccP256CurvePoint in rSig shall

be taken to be of form x-only.

NOTE—When the signature is of form x-only, the x-value in rSig is an integer mod n, the order of the

group; when the signature is of form compressed-y-*, the x-value in rSig is an integer mod p, the

underlying prime defining the finite field. In principle this means that to convert a signature from form

compressed-y-* to form x-only, the x-value should be checked to see if it lies between n and p and

reduced mod n if so. In practice this check is unnecessary: Haase’s Theorem states that difference between n

and p is always less than 2p, and so the chance that an integer lies between n and p, for a 384-bit curve, is

bounded above by approximately p/p or 2-192. For the 384-bit curve in this standard, the exact values of n

and p in hexadecimal are:

 p =

8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB71123ACD3A729

901D1A71874700133107EC53

 n =

8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A7CF3AB6A

F6B7FC3103B883202E9046565

6.3.32 EncryptedData

 EncryptedData ::= SEQUENCE {

 recipients SequenceOfRecipientInfo,

 ciphertext SymmetricCiphertext

 }

This data structure encodes data that has been encrypted to one or more recipients using the recipients’ public

or symmetric keys as specified in 5.3.4.

The type contains the following fields:

 recipients contains one or more RecipientInfos, defined below. If the ciphertext was

produced using the static data encryption key approach specified in 5.3.4.2, recipients contains

a single entry of type PreSharedKeyRecipientInfo. If the ciphertext was produced using the

ephemeral data encryption key approach specified in 5.3.4.1, recipients contains one or more entries

which are of any type other than PreSharedKeyRecipientInfo.

 ciphertext contains the encrypted data. This is the encryption of an encoded Ieee1609Dot2Data

structure.

Critical information fields:

 If present, recipients is a critical information field as defined in 5.2.5. An implementation that

does not support the number of RecipientInfo in recipients when decrypted shall indicate that

the encrypted SPDU could not be decrypted due to unsupported critical information fields. A

compliant implementation shall support recipients fields containing at least eight entries.

13 The compressed forms give some performance advantage on verification compared to the x-only form, at the same packet size as

the x-only form; the uncompressed form gives a greater performance advantage at the cost of increased packet size.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

63

6.3.33 RecipientInfo

 RecipientInfo ::= CHOICE {

 pskRecipInfo PreSharedKeyRecipientInfo,

 symmRecipInfo SymmRecipientInfo,

 certRecipInfo PKRecipientInfo,

 signedDataRecipInfo PKRecipientInfo,

 rekRecipInfo PKRecipientInfo

 }

 SequenceOfRecipientInfo ::= SEQUENCE OF RecipientInfo

This data structure is used to transfer the data encryption key to an individual recipient of an

EncryptedData. The option pskRecipInfo is selected if the EncryptedData was encrypted using

the static encryption key approach specified in 5.3.4.2. The other options are selected if the

EncryptedData was encrypted using the ephemeral encryption key approach specified in 5.3.4.1. The

meanings of the choices are:

 pskRecipInfo: The ciphertext was encrypted directly using a symmetric key.

 symmRecipInfo: The data encryption key was encrypted using a symmetric key.

 certRecipInfo: The data encryption key was encrypted using a public key encryption scheme,

where the public encryption key was obtained from a certificate. In this case, the parameter P1 to

ECIES as defined in 5.3.5 is the hash of the certificate.

 signedDataRecipInfo: The data encryption key was encrypted using a public encryption key,

where the encryption key was obtained as the public response encryption key from a SignedData. In

this case, the parameter P1 to ECIES as defined in 5.3.5 is the SHA-256 hash of the Ieee1609Dot2-

Data containing the response encryption key.

 rekRecipInfo: The data encryption key was encrypted using a public key that was not obtained

from a SignedData. In this case, the parameter P1 to ECIES as defined in 5.3.5 is the hash of the

empty string.

See Annex C.7 for guidance on when it may be appropriate to use each of these approaches.

6.3.34 PreSharedKeyRecipientInfo

 PreSharedKeyRecipientInfo ::= HashedId8

This data structure is used to indicate a symmetric key that may be used directly to decrypt a

SymmetricCiphertext. It consists of the low-order 8 bytes of the SHA-256 hash of the COER encoding of a

SymmetricEncryptionKey structure containing the symmetric key in question. The symmetric key may be

established by any appropriate means agreed by the two parties to the exchange.

6.3.35 SymmRecipientInfo

 SymmRecipientInfo ::= SEQUENCE {
 recipientId HashedId8,

 encKey SymmetricCiphertext

 }

This data structure contains the following fields:

 recipientId contains the hash of the symmetric key encryption key that may be used to decrypt

the data encryption key. It consists of the low-order 8 bytes of the SHA-256 hash of the COER

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

64

encoding of a SymmetricEncryptionKey structure containing the symmetric key in question. The

symmetric key may be established by any appropriate means agreed by the two parties to the

exchange.

 encKey contains the encrypted data encryption key within an AES-CCM ciphertext.

6.3.36 PKRecipientInfo

 PKRecipientInfo ::= SEQUENCE {

 recipientId HashedId8,

 encKey EncryptedDataEncryptionKey

 }

This data structure contains the following fields:

 recipientId contains the hash of the “container” for the encryption public key as specified in the

definition of RecipientInfo. Specifically, depending on the choice indicated by the containing

RecipientInfo structure:

⎯ If the containing RecipientInfo structure indicates certRecipInfo, this field contains

the HashedId8 of the certificate. The HashedId8 is calculated with the whole-certificate hash

algorithm, determined as described in 6.4.3.

⎯ If the containing RecipientInfo structure indicates signedDataRecipInfo, this field

contains the HashedId8 of the Ieee1609Dot2Data of type signed that contained the encryption

key, with that Ieee1609Dot2Data canonicalized per 6.3.4. The HashedId8 is calculated with

SHA-256.

⎯ If the containing RecipientInfo structure indicates rekRecipInfo, this field contains

the HashedId8 of the COER encoding of a PublicEncryptionKey structure containing the

response encryption key. The HashedId8 is calculated with SHA-256.

 encKey contains the encrypted key.

6.3.37 EncryptedDataEncryptionKey

 EncryptedDataEncryptionKey ::= CHOICE {

 eciesNistP256 EciesP256EncryptedKey,

 eciesBrainpoolP256r1 EciesP256EncryptedKey,

 ...

 }

This data structure contains an encrypted data encryption key.

Critical information fields: If present and applicable to the receiving SDEE, this is a critical information

field as defined in 5.2.5. If an implementation receives an encrypted SPDU and determines that one or more

RecipientInfo fields are relevant to it, and if all of those RecipientInfos contain an

EncryptedDataEncryptionKey such that the implementation does not recognize the indicated CHOICE, the

implementation shall indicate that the encrypted SPDU is not decryptable.

6.3.38 EciesP256EncryptedKey

 EciesP256EncryptedKey ::= SEQUENCE {

 v EccP256CurvePoint,

 c OCTET STRING (SIZE (16)),

 t OCTET STRING (SIZE (16))

 }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

65

This data structure is used to transfer a 16-byte symmetric key encrypted using ECIES as specified in IEEE

Std 1363a-2004. The type contains the following fields:

 v is the sender’s ephemeral public key, which is the output V from encryption as specified in 5.3.5.

 c is the encrypted symmetric key, which is the output C from encryption as specified in 5.3.5. The

algorithm for the symmetric key is identified by the CHOICE indicated in the following

SymmetricCiphertext.

 t is the authentication tag, which is the output tag from encryption as specified in 5.3.5.

Encryption and decryption are carried out as specified in 5.3.5.

6.3.39 SymmetricCiphertext

 SymmetricCiphertext ::= CHOICE {

 aes128ccm Aes128CcmCiphertext,

 ...

 }

This data structure encapsulates a ciphertext generated with an approved symmetric algorithm.

Critical information fields: If present, this is a critical information field as defined in 5.2.5. An

implementation that does not recognize the indicated CHOICE value for this type in an encrypted SPDU

shall reject the SPDU as invalid.

6.3.40 Aes128CcmCiphertext

 Aes128CcmCiphertext ::= SEQUENCE {

 nonce OCTET STRING (SIZE (12)),

 ccmCiphertext Opaque

 }

This data structure encapsulates an encrypted ciphertext for the AES-CCM symmetric algorithm. It contains

the following fields:

 nonce contains the nonce N as specified in 5.3.8.

 ccmCiphertext contains the ciphertext C as specified in 5.3.8.

The ciphertext is 16 bytes longer than the corresponding plaintext.

The plaintext resulting from a correct decryption of the ciphertext is a COER-encoded Ieee1609Dot2Data

structure.

6.3.41 Countersignature

 Countersignature ::= Ieee1609Dot2Data (WITH COMPONENTS {...,

 content (WITH COMPONENTS {...,

 signedData (WITH COMPONENTS {...,

 tbsData (WITH COMPONENTS {...,

 payload (WITH COMPONENTS {...,

 data ABSENT,

 extDataHash PRESENT

 }),

 headerInfo(WITH COMPONENTS {...,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

66

 generationTime PRESENT,

 expiryTime ABSENT,

 generationLocation ABSENT,

 p2pcdLearningRequest ABSENT,

 missingCrlIdentifier ABSENT,

 encryptionKey ABSENT

 })

 })

 })

 })

 })

This data structure is used to perform a countersignature over an already-signed SPDU. This is the profile of

an Ieee1609Dot2Data containing a signedData. The tbsData within content is comprised of a payload

containing the hash (extDataHash) of the externally generated, pre-signed SPDU over which the

countersignature is performed.

6.4 Certificates and other security management data structures

6.4.1 General

Subclause 6.4 specifies the structures to be used for certificates and security management.

6.4.2 Certificate

 Certificate ::=

 CertificateBase (ImplicitCertificate | ExplicitCertificate)

 SequenceOfCertificate ::= SEQUENCE OF Certificate

This structure is a profile of the structure CertificateBase which specifies the valid combinations of fields to

transmit implicit and explicit certificates.

6.4.3 CertificateBase

 CertificateBase ::= SEQUENCE {

 version Uint8(3),

 type CertificateType,

 issuer IssuerIdentifier,

 toBeSigned ToBeSignedCertificate,

 signature Signature OPTIONAL

 }

The fields in this structure have the following meaning:

 version contains the version of the certificate format. In this version of the data structures, this

field is set to 3.

 type states whether the certificate is implicit or explicit. This field is set to explicit for explicit

certificates and to implicit for implicit certificates. See ExplicitCertificate and ImplicitCertificate

for more details.

 issuer identifies the issuer of the certificate.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

67

 toBeSigned is the certificate contents. This field is an input to the hash when generating or

verifying signatures for an explicit certificate, or generating or verifying the public key from the

reconstruction value for an implicit certificate. The details of how this field are encoded are given in

the description of the ToBeSignedCertificate type.

 signature is included in an ExplicitCertificate. It is the signature, calculated by the signer

identified in the issuer field, over the hash of toBeSigned. The hash is calculated as specified

in 5.3.1, where:

 Data input is the encoding of toBeSigned following the COER.

 Signer identifier input depends on the verification type, which in turn depends on the choice

indicated by issuer. If the choice indicated by issuer is self, the verification type is self-

signed and the signer identifier input is the empty string. If the choice indicated by issuer is

not self, the verification type is certificate and the signer identifier input is the canonicalized

COER encoding of the certificate indicated by issuer. The canonicalization is carried out as

specified in the Encoding considerations section of this subclause.

Encoding considerations: When a certificate is encoded for hashing, for example to generate its HashedId8,

or when it is to be used as the signer identifier information for verification, it is canonicalized as follows:

 The encoding of toBeSigned uses the compressed form for all elliptic curve points: that is, those

points indicate a choice of compressed-y-0 or compressed-y-1.

 The encoding of the signature, if present and if an ECDSA signature, takes the r value to be an

EccP256CurvePoint or EccP384CurvePoint indicating the choice x-only.

Whole-certificate hash: If the entirety of a certificate is hashed to calculate a HashedId3, HashedId8, or

HashedId10, the algorithm used for this purpose is known as the whole-certificate hash.

 The whole-certificate hash is SHA-256 if the certificate is an implicit certificate.

 The whole-certificate hash is SHA-256 if the certificate is an explicit certificate and toBeSigned.-

verifyKeyIndicator.verificationKey is a EccP256CurvePoint.

 The whole-certificate hash is SHA-384 if the certificate is an explicit certificate and toBeSigned.-

verifyKeyIndicator.verificationKey is a EccP384CurvePoint.

6.4.4 CertificateType

 CertificateType ::= ENUMERATED {

 explicit,

 implicit,

 ...

 }

This enumerated type indicates whether a certificate is explicit or implicit.

Critical information fields: If present, this is a critical information field as defined in 5.2.5. An

implementation that does not recognize the indicated CHOICE for this type when verifying a signed SPDU

shall indicate that the signed SPDU is invalid.

6.4.5 ImplicitCertificate

 ImplicitCertificate ::= CertificateBase (WITH COMPONENTS {...,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

68

 type(implicit),

 toBeSigned(WITH COMPONENTS {...,

 verifyKeyIndicator(WITH COMPONENTS {reconstructionValue})

 }),

 signature ABSENT

 })

This is a profile of the CertificateBase structure providing all the fields necessary for an implicit certificate,

and no others.

6.4.6 ExplicitCertificate

 ExplicitCertificate ::= CertificateBase (WITH COMPONENTS {...,

 type(explicit),

 toBeSigned(WITH COMPONENTS {...,

 verifyKeyIndicator(WITH COMPONENTS {verificationKey})

 }),

 signature PRESENT

 })

This is a profile of the CertificateBase structure providing all the fields necessary for an explicit certificate,

and no others.

6.4.7 IssuerIdentifier

 IssuerIdentifier ::= CHOICE {

 sha256AndDigest HashedId8,

 self HashAlgorithm,

 ...,

 sha384AndDigest HashedId8

 }

This structure allows the recipient of a certificate to determine which keying material to use to authenticate

the certificate.

If the choice indicated is sha256AndDigest or sha384AndDigest:

 The structure contains the HashedId8 of the issuing certificate, where the certificate is canonicalized

as specified in 6.4.3 before hashing and the HashedId8 is calculated with the whole-certificate hash

algorithm, determined as described in 6.4.3.

 The hash algorithm to be used to generate the hash of the certificate for verification is SHA-256 (in

the case of sha256AndDigest) or SHA-384 (in the case of sha384AndDigest).

 The certificate is to be verified with the public key of the indicated issuing certificate.

If the choice indicated is self:

 The structure indicates what hash algorithm is to be used to generate the hash of the certificate for

verification.

 The certificate is to be verified with the public key indicated by the verifyKeyIndicator field

in theToBeSignedCertificate.

Critical information fields: If present, this is a critical information field as defined in 5.2.5. An

implementation that does not recognize the indicated CHOICE for this type when verifying a signed SPDU

shall indicate that the signed SPDU is invalid.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

69

6.4.8 ToBeSignedCertificate

 ToBeSignedCertificate ::= SEQUENCE {

 id CertificateId,

 cracaId HashedId3,

 crlSeries CrlSeries,

 validityPeriod ValidityPeriod,

 region GeographicRegion OPTIONAL,

 assuranceLevel SubjectAssurance OPTIONAL,

 appPermissions SequenceOfPsidSsp OPTIONAL,

 certIssuePermissions SequenceOfPsidGroupPermissions OPTIONAL,

 certRequestPermissions SequenceOfPsidGroupPermissions OPTIONAL,

 canRequestRollover NULL OPTIONAL,

 encryptionKey PublicEncryptionKey OPTIONAL,

 verifyKeyIndicator VerificationKeyIndicator,

 ...

 }

 (WITH COMPONENTS { ..., appPermissions PRESENT} |

 WITH COMPONENTS { ..., certIssuePermissions PRESENT} |

 WITH COMPONENTS { ..., certRequestPermissions PRESENT})

The fields in the ToBeSignedCertificate structure have the following meaning:

 id contains information that is used to identify the certificate holder if necessary.

 cracaId identifies the Certificate Revocation Authorization CA (CRACA) responsible for

certificate revocation lists (CRLs) on which this certificate might appear. Use of the cracaId is

specified in 5.1.3. The HashedId3 is calculated with the whole-certificate hash algorithm, determined

as described in 6.4.3.

 crlSeries represents the CRL series relevant to a particular Certificate Revocation Authorization

CA (CRACA) on which the certificate might appear. Use of this field is specified in 5.1.3.

 validityPeriod contains the validity period of the certificate.

 region, if present, indicates the validity region of the certificate. If it is omitted the validity region

is indicated as follows:

 If enclosing certificate is self-signed, i.e., the choice indicated by the issuer field in the

enclosing certificate structure is self, the certificate is valid worldwide.

 Otherwise, the certificate has the same validity region as the certificate that issued it.

 assuranceLevel indicates the assurance level of the certificate holder.

 appPermissions indicates the permissions that the certificate holder has to sign application data

with this certificate. A valid instance of appPermissions contains any particular Psid value in

at most one entry.

 certIssuePermissions indicates the permissions that the certificate holder has to sign

certificates with this certificate. A valid instance of this array contains no more than one entry whose

psidSspRange field indicates all. If the array has multiple entries and one entry has its psidSspRange

field indicate all, then the entry indicating all specifies the permissions for all PSIDs other than the

ones explicitly specified in the other entries. See the description of PsidGroupPermissions for further

discussion.

 certRequestPermissions indicates the permissions that the certificate holder has to sign

certificate requests with this certificate. A valid instance of this array contains no more than one entry

whose psidSspRange field indicates all. If the array has multiple entries and one entry has its

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

70

psidSspRange field indicate all, then the entry indicating all specifies the permissions for all PSIDs

other than the ones explicitly specified in the other entries. See the description of

PsidGroupPermissions for further discussion.

 canRequestRollover indicates that the certificate may be used to sign a request for another

certificate with the same permissions. This field is provided for future use and its use is not defined

in this version of this standard.

 encryptionKey contains a public key for encryption for which the certificate holder holds the

corresponding private key.

 verifyKeyIndicator contains material that may be used to recover the public key that may be

used to verify data signed by this certificate.

Encoding considerations: The encoding of toBeSigned which is input to the hash uses the compressed

form for all public keys and reconstruction values that are elliptic curve points: that is, those points indicate

a choice of compressed-y-0 or compressed-y-1. The encoding of the issuing certificate uses the

compressed form for all public key and reconstruction values and takes the r value of an ECDSA signature,

which in this standard is an ECC curve point, to be of type x-only.

For both implicit and explicit certificates, when the certificate is hashed to create or recover the public key

(in the case of an implicit certificate) or to generate or verify the signature (in the case of an explicit

certificate), the hash is Hash (Data input) || Hash (Signer identifier input), where:

 Data input is the COER encoding of toBeSigned, canonicalized as described above.

 Signer identifier input depends on the verification type, which in turn depends on the choice indicated

by issuer. If the choice indicated by issuer is self, the verification type is self-signed and the

signer identifier input is the empty string. If the choice indicated by issuer is not self, the

verification type is certificate and the signer identifier input is the COER encoding of the

canonicalization per 6.4.3 of the certificate indicated by issuer.

In other words, for implicit certificates, the value H (CertU) in SEC 4, section 3, is for purposes of this

standard taken to be H [H (canonicalized ToBeSignedCertificate from the subordinate certificate) || H

(canonicalized entirety of issuer Certificate)]. See 5.3.2 for further discussion, including material differences

between this standard and SEC4 regarding how the hash function output is converted from a bit string to an

integer.

NOTE—This encoding of the implicit certificate for hashing has been changed from the encoding specified in IEEE Std

1609.2-2013 for consistency with the encoding of the explicit certificates. This definition of the encoding results in

implicit and explicit certificates both being hashed as specified in 5.3.1.

Critical information fields:

 If present, appPermissions is a critical information field as defined in 5.2.5. An implementation

that does not support the number of PsidSsp in appPermissions shall reject the signed SPDU

as invalid. A compliant implementation shall support appPermissions fields containing at least

eight entries.

 If present, certIssuePermissions is a critical information field as defined in 5.2.5. An

implementation that does not support the number of PsidGroupPermissions in

certIssuePermissions shall reject the signed SPDU as invalid. A compliant implementation

shall support certIssuePermissions fields containing at least eight entries.

 If present, certRequestPermissions is a critical information field as defined in 5.2.5. An

implementation that does not support the number of PsidGroupPermissions in

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

71

certRequestPermissions shall reject the signed SPDU as invalid. A compliant

implementation shall support certRequestPermissions fields containing at least eight entries.

6.4.9 CertificateId

 CertificateId ::= CHOICE {

 linkageData LinkageData,

 name Hostname,

 binaryId OCTET STRING(SIZE(1..64)),

 none NULL,

 ...

 }

This structure contains information that is used to identify the certificate holder if necessary.

 linkageData is used to identify the certificate for revocation purposes in the case of certificates

that appear on linked certificate CRLs. See 5.1.3 and 7.3 for further discussion.

 name is used to identify the certificate holder in the case of non-anonymous certificates. The contents

of this field are a matter of policy and should be human-readable.

 binaryId supports identifiers that are not human-readable.

 none indicates that the certificate does not include an identifier.

Critical information fields:

 If present, this is a critical information field as defined in 5.2.5. An implementation that does not

recognize the choice indicated in this field shall reject a signed SPDU as invalid.

6.4.10 LinkageData

 LinkageData ::= SEQUENCE {

 iCert IValue,

 linkage-value LinkageValue,

 group-linkage-value GroupLinkageValue OPTIONAL

 }

This structure contains information that is matched against information obtained from a linkage ID-based

CRL to determine whether the containing certificate has been revoked. See 5.1.3.4 and 7.3 for details of use.

6.4.11 LinkageValue

 LinkageValue ::= OCTET STRING (SIZE(9))

This is the individual linkage value. See 5.1.3 and 7.3 for details of use.

6.4.12 GroupLinkageValue

 GroupLinkageValue ::= SEQUENCE {

 jValue OCTET STRING (SIZE(4)),

 value OCTET STRING (SIZE(9))

 }

This is the group linkage value. See 5.1.3 and 7.3 for details of use.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

72

6.4.13 Hostname

 Hostname ::= UTF8String (SIZE(0..255))

This is a UTF-8 string as defined in IETF RFC 3629. The contents are determined by policy.

6.4.14 ValidityPeriod

 ValidityPeriod ::= SEQUENCE {

 start Time32,

 duration Duration

 }

This type gives the validity period of a certificate. The start of the validity period is given by start and the

end is given by start + duration.

6.4.15 Time32

 Time32 ::= Uint32

This type gives the number of (TAI) seconds since 00:00:00 UTC, 1 January, 2004.

6.4.16 Duration

 Duration ::= CHOICE {

 microseconds Uint16,

 milliseconds Uint16,

 seconds Uint16,

 minutes Uint16,

 hours Uint16,

 sixtyHours Uint16,

 years Uint16

 }

This type represents the duration of validity of a certificate. The Uint16 value is the duration, given in the

units denoted by the indicated choice. A year is considered to be 31556952 seconds, which is the average

number of seconds in a year; if it is desired to map years more closely to wall-clock days, this can be done

using the hours choice for up to seven years and the sixtyHours choice for up to 448 years.

6.4.17 GeographicRegion

 GeographicRegion ::= CHOICE {

 circularRegion CircularRegion,

 rectangularRegion SequenceOfRectangularRegion,

 polygonalRegion PolygonalRegion,

 identifiedRegion SequenceOfIdentifiedRegion,

 ...

 }

This type represents a geographic region of a specified form.

 rectangularRegion is an array of RectangularRegion structures containing at least one entry.

This field is interpreted as a series of rectangles, which may overlap or be disjoint. The permitted

region is any point within any of the rectangles.

 circularRegion or polygonalRegion contain a single instance of their respective types.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

73

 identifiedRegion is an array of IdentifiedRegion structures containing at least one entry. The

permitted region is any point within any of the identified regions.

A certificate is not valid if any part of the region indicated in its scope field lies outside the region indicated

in the scope of its issuer.

Critical information fields:

 If present, this is a critical information field as defined in 5.2.5. An implementation that does not

recognize the indicated CHOICE when verifying a signed SPDU shall indicate that the signed SPDU

is invalid.

 If selected, rectangularRegion is a critical information field as defined in 5.2.5. An

implementation that does not support the number of RectangularRegion in

rectangularRegions when verifying a signed SPDU shall indicate that the signed SPDU is

invalid. A compliant implementation shall support rectangularRegions fields containing at

least eight entries.

 If selected, identifiedRegion is a critical information field as defined in 5.2.5. An

implementation that does not support the number of IdentifiedRegion in identifiedRegion

shall reject the signed SPDU as invalid. A compliant implementation shall support

identifiedRegion fields containing at least eight entries.

6.4.18 CircularRegion

 CircularRegion ::= SEQUENCE {

 center TwoDLocation,

 radius Uint16

 }

This structure specifies a circle with its center at center, its radius given in meters, and located tangential

to the reference ellipsoid. The indicated region is all the points on the surface of the reference ellipsoid whose

distance to the center point over the reference ellipsoid is less than or equal to the radius. A point which

contains an elevation component is considered to be within the circular region if its horizontal projection

onto the reference ellipsoid lies within the region.

6.4.19 TwoDLocation

 TwoDLocation ::= SEQUENCE {

 latitude Latitude,

 longitude Longitude

 }

This data structure is used to define validity regions for use in certificates. The latitude and longitude

fields contain the latitude and longitude as defined above.

NOTE—This data structure is consistent with the location encoding used in SAE J2735 [B20], except that values

900 000 001 for latitude (used to indicate that the latitude was not available) and 1 800 000 001 for longitude (used to

indicate that the longitude was not available) are not valid.

6.4.20 RectangularRegion

 RectangularRegion ::= SEQUENCE {

 northWest TwoDLocation,

 southEast TwoDLocation

 }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

74

 SequenceOfRectangularRegion ::= SEQUENCE OF RectangularRegion

This structure specifies a rectangle formed by connecting in sequence: (northWest.latitude,

northWest.longitude), (southEast.latitude, northWest.longitude),

(southEast.latitude, southEast.longitude), and (northWest.latitude,

southEast.longitude). The points are connected by lines of constant latitude or longitude. A point

which contains an elevation component is considered to be within the rectangular region if its horizontal

projection onto the reference ellipsoid lies within the region. A RectangularRegion is valid only if the

northWest value is north and west of the southEast value, i.e., the two points cannot have equal

latitude or equal longitude.

6.4.21 PolygonalRegion

 PolygonalRegion ::= SEQUENCE SIZE(3..MAX) OF TwoDLocation

This data structure defines a region using a series of distinct geographic points, defined on the surface of the

reference ellipsoid. The region is specified by connecting the points in the order they appear, with each pair

of points connected by the geodesic on the reference ellipsoid. The polygon is completed by connecting the

final point to the first point. The allowed region is the interior of the polygon and its boundary.

A point which contains an elevation component is considered to be within the polygonal region if its

horizontal projection onto the reference ellipsoid lies within the region.

A valid PolygonalRegion contains at least three points. In a valid PolygonalRegion, the implied lines that

make up the sides of the polygon do not intersect.

Critical information fields:

 If present, this is a critical information field as defined in 5.2.5. An implementation that does not

support the number of TwoDLocation in the PolygonalRegion when verifying a signed SPDU shall

indicate that the signed SPDU is invalid. A compliant implementation shall support

PolygonalRegions containing at least eight TwoDLocation entries.

6.4.22 IdentifiedRegion

 IdentifiedRegion ::= CHOICE {

 countryOnly CountryOnly,

 countryAndRegions CountryAndRegions,

 countryAndSubregions CountryAndSubregions,

 ...

 }

 SequenceOfIdentifiedRegion ::= SEQUENCE OF IdentifiedRegion

This type indicates the region of validity of a certificate using region identifiers.

Critical information fields:

 If present, this is a critical information field as defined in 5.2.5. An implementation that does not

recognize the indicated CHOICE when verifying a signed SPDU shall indicate that the signed SPDU

is invalid.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

75

6.4.23 CountryOnly

 CountryOnly ::= Uint16

This is the integer representation of the country or area identifier as defined by the United Nations Statistics

Division in October 2013 (see normative references in Clause 2).

6.4.24 CountryAndRegions

 CountryAndRegions ::= SEQUENCE {

 countryOnly CountryOnly,

 regions SequenceOfUint8

 }

In this type:

 countryOnly is a CountryOnly as defined above.

 region identifies one or more regions within the country. If countryOnly indicates the United

States of America, the values in this field identify the state or statistically equivalent entity using the

integer version of the 2010 FIPS codes as provided by the U.S. Census Bureau (see normative

references in Clause 2). For other values of countryOnly, the meaning of region is not defined

in this version of this standard.

6.4.25 CountryAndSubregions

 CountryAndSubregions ::= SEQUENCE {

 country CountryOnly,

 regionAndSubregions SequenceOfRegionAndSubregions

 }

In this type:

 country is a CountryOnly as defined above.

 regionAndSubregions identifies one or more subregions within country. If country

indicates the United States of America, the values in this field identify the county or county

equivalent entity using the integer version of the 2010 FIPS codes as provided by the U.S. Census

Bureau (see normative references in Clause 2). For other values of country, the meaning of

regionAndSubregions is not defined in this version of this standard.

Critical information fields:

 If present, this is a critical information field as defined in 5.2.5. An implementation that does not

recognize RegionAndSubregions or CountryAndSubregions values when verifying a signed SPDU

shall indicate that the signed SPDU is invalid. A compliant implementation shall support

CountryAndSubregions containing at least eight RegionAndSubregions entries.

6.4.26 RegionAndSubregions

 RegionAndSubregions::= SEQUENCE {

 region Uint8,

 subregions SequenceOfUint16

 }

 SequenceOfRegionAndSubregions ::= SEQUENCE OF RegionAndSubregions

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

76

In this type:

 region identifies a region within a country as specified under CountryAndRegions.

 subregions identifies one or more subregions as specified under CountryAndSubregions.

Critical information fields: RegionAndSubregions is a critical information field as defined in 5.2.5. An

implementation that does not detect or recognize the the region or subregions values when verifying a signed

SPDU shall indicate that the signed SPDU is invalid.

6.4.27 SubjectAssurance

 SubjectAssurance ::= OCTET STRING (SIZE(1))

This field contains the certificate holder’s assurance level, which indicates the security of both the platform

and storage of secret keys as well as the confidence in this assessment.

This field is encoded as defined in Table 1, where “A” denotes bit fields specifying an assurance level, “R”

reserved bit fields, and “C” bit fields specifying the confidence.

Table 1 —Bitwise encoding of subject assurance

Bit number 7 6 5 4 3 2 1 0

Interpretation A A A R R R C C

In Table 1, bit number 0 denotes the least significant bit. Bit 7 to bit 5 denote the device’s assurance levels,

bit 4 to bit 2 are reserved for future use, and bit 1 and bit 0 denote the confidence.

The specification of these assurance levels as well as the encoding of the confidence levels is outside the

scope of the present document. It can be assumed that a higher assurance value indicates that the holder is

more trusted than the holder of a certificate lower assurance value and the same confidence value.

NOTE—This field was originally specified in ETSI TS 103 097 [B7] and future uses of this field are anticipated to be

consistent with future versions of that document.

6.4.28 PsidSsp

 PsidSsp ::= SEQUENCE {

 psid Psid,

 ssp ServiceSpecificPermissions OPTIONAL

 }

 SequenceOfPsidSsp ::= SEQUENCE OF PsidSsp

This structure represents the permissions that the certificate holder has with respect to data for a single

application area, identified by a Psid. If the ServiceSpecificPermissions field is omitted, it indicates that the

certificate holder has the default permissions associated with that Psid.

Consistency with signed SPDU. As noted in 5.1.1, consistency between the SSP and the signed SPDU is

defined by rules specific to the given PSID and is out of scope for this standard.

Consistency with issuing certificate.

If a certificate has an appPermissions entry A for which the ssp field is omitted, A is consistent with the

issuing certificate if the issuing certificate contains a PsidSspRange P for which the following holds:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

77

 The psid field in P is equal to the psid field in A and one of the following is true:

 The sspRange field in P indicates all.

 The sspRange field in P indicates opaque and one of the entries in opaque is an OCTET

STRING of length 0.

For consistency rules for other forms of the ssp field, see the following subclauses.

6.4.29 ServiceSpecificPermissions

 ServiceSpecificPermissions ::= CHOICE {

 opaque OCTET STRING (SIZE(0..MAX)),

 ...,

 bitmapSsp BitmapSsp

}

This structure represents the Service Specific Permissions (SSP) relevant to a given entry in a PsidSsp. The

meaning of the SSP is specific to the associated Psid. SSPs may be PSID-specific octet strings or bitmap-

based. See Annex C for further discussion of how application specifiers may choose which SSP form to use.

Consistency with issuing certificate.

If a certificate has an appPermissions entry A for which the ssp field is opaque, A is consistent with

the issuing certificate if the issuing certificate contains one of the following:

 (OPTION 1) A SubjectPermissions field indicating the choice all and no PsidSspRange field

containing the psid field in A;

 (OPTION 2) A PsidSspRange P for which the following holds:

 The psid field in P is equal to the psid field in A and one of the following is true:

 The sspRange field in P indicates all.

 The sspRange field in P indicates opaque and one of the entries in the opaque field

in P is an OCTET STRING identical to the opaque field in A.

For consistency rules for other types of ServiceSpecificPermissions, see the following subclauses.

6.4.30 BitmapSsp

 BitmapSsp ::= OCTET STRING (SIZE(0..31))

This structure represents a bitmap representation of a SSP. The mapping of the bits of the bitmap to

constraints on the signed SPDU is PSID-specific.

Consistency with issuing certificate.

If a certificate has an appPermissions entry A for which the ssp field is bitmapSsp, A is consistent

with the issuing certificate if the issuing certificate contains one of the following:

 (OPTION 1) A SubjectPermissions field indicating the choice all and no PsidSspRange field

containing the psid field in A;

 (OPTION 2) A PsidSspRange P for which the following holds:

 The psid field in P is equal to the psid field in A and one of the following is true:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

78

 EITHER The sspRange field in P indicates all

 OR The sspRange field in R indicates bitmapSspRange and for every bit set to 1 in

the sspBitmask in R, the bit in the identical position in the sspValue in P is set equal

to the bit in that position in the sspValue in R.

NOTE—A BitmapSsp B is consistent with a BitmapSspRange R if for every bit set to 1 in the sspBitmask in R, the

bit in the identical position in B is set equal to the bit in that position in the sspValue in R. For each bit set to 0 in the

sspBitmask in R, the corresponding bit in the identical position in B may be freely set to 0 or 1, i.e. if a bit is set to 0

in the sspBitmask in R, the value of corresponding bit in the identical position in B has no bearing on whether B and

R are consistent.

6.4.31 PsidGroupPermissions

 PsidGroupPermissions ::= SEQUENCE {

 subjectPermissions SubjectPermissions,

 minChainLength INTEGER DEFAULT 1,

 chainLengthRange INTEGER DEFAULT 0,

 eeType EndEntityType DEFAULT {app}

 }

 SequenceOfPsidGroupPermissions ::= SEQUENCE OF PsidGroupPermissions

This structure states the permissions that a certificate holder has with respect to issuing and requesting

certificates for a particular set of PSIDs. In this structure:

 subjectPermissions indicates PSIDs and SSP Ranges covered by this field.

 minChainLength and chainLengthRange indicate how long the certificate chain from this

certificate to the end-entity certificate is permitted to be. As specified in 5.1.2.1, the length of the

certificate chain is the number of certificates “below” this certificate in the chain, down to and

including the end-entity certificate. The length is permitted to be (a) greater than or equal to

minChainLength certificates and (b) less than or equal to minChainLength +

chainLengthRange certificates. A value of 0 for minChainLength is not permitted when this

type appears in the certIssuePermissions field of a ToBeSignedCertificate; a

certificate that has a value of 0 for this field is invalid. The value −1 for chainLengthRange is a

special case: if the value of chainLengthRange is −1 it indicates that the certificate chain may

be any length equal to or greater than minChainLength. See the examples below for further

discussion.

 eeType takes one or more of the values app and enroll and indicates the type of certificates or

requests that this instance of PsidGroupPermissions in the certificate is entitled to authorize. If this

field indicates app, the chain is allowed to end in an authorization certificate, i.e., a certficate in

which these permissions appear in an appPermissions field (in other words, if the field does not

indicate app but the chain ends in an authorization certificate, the chain shall be considered invalid).

If this field indicates enroll, the chain is allowed to end in an enrollment certificate, i.e., a

certificate in which these permissions appear in a certReqPermissions permissions field), or

both (in other words, if the field does not indicate app but the chain ends in an authorization

certificate, the chain shall be considered invalid). Different instances of PsidGroupPermissions

within a ToBeSignedCertificate may have different values for eeType.

For examples, see Annexes D.5.3 and D.5.4.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

79

6.4.32 SubjectPermissions

 SubjectPermissions ::= CHOICE {

 explicit SequenceOfPsidSspRange,

 all NULL,

 ...

 }

This indicates the PSIDs and associated SSPs for which certificate issuance or request permissions are

granted by a PsidGroupPermissions structure. If this takes the value explicit, the enclosing

PsidGroupPermissions structure grants certificate issuance or request permissions for the indicated PSIDs

and SSP Ranges. If this takes the value all, the enclosing PsidGroupPermissions structure grants certificate

issuance or request permissions for all PSIDs not indicated by other PsidGroupPermissions in the same

certIssuePermissions or certRequestPermissions field.

Critical information fields:

 If present, this is a critical information field as defined in 5.2.5. An implementation that does not

recognize the indicated CHOICE when verifying a signed SPDU shall indicate that the signed SPDU

is invalid.

 If present, explicit is a critical information field as defined in 5.2.5. An implementation that does

not support the number of PsidSspRange in explicit when verifying a signed SPDU shall indicate

that the signed SPDU is invalid. A compliant implementation shall support explicit fields

containing at least eight entries.

6.4.33 EndEntityType

 EndEntityType ::= BIT STRING {app (0), enroll (1) } (SIZE (8)) (ALL

EXCEPT {})

This type indicates which type of permissions may appear in end-entity certificates the chain of whose

permissions passes through the PsidGroupPermissions field containing this value. If app is indicated, the

end-entity certificate may contain an appPermissions field. If enroll is indicated, the end-entity

certificate may contain a certRequestPermissions field.

6.4.34 PsidSspRange

 PsidSspRange ::= SEQUENCE {

 psid Psid,

 sspRange OPTIONAL

 }

 SequenceOfPsidSspRange ::= SEQUENCE OF PsidSspRange

This structure represents the certificate issuing or requesting permissions of the certificate holder with respect

to one particular set of application permissions. In this structure:

 psid identifies the application area.

 sspRange identifies the SSPs associated with that PSID for which the holder may issue or request

certificates. If sspRange is omitted, the holder may issue or request certificates for any SSP for that

PSID.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

80

6.4.35 SspRange

 SspRange ::= CHOICE {

 opaque SequenceOfOctetString,

 all NULL,

 ... ,

 bitmapSspRange BitmapSspRange

}

This structure identifies the SSPs associated with a PSID for which the holder may issue or request

certificates.

Consistency with issuing certificate.

If a certificate has a PsidSspRange A for which the ssp field is opaque, A is consistent with the issuing

certificate if the issuing certificate contains one of the following:

 (OPTION 1) A SubjectPermissions field indicating the choice all and no PsidSspRange field

containing the psid field in A;

 (OPTION 2) a PsidSspRange P for which the following holds:

 The psid field in P is equal to the psid field in A and one of the following is true:

 The sspRange field in P indicates all.

 The sspRange field in P indicates opaque, and the sspRange field in A indicates

opaque, and every OCTET STRING within the opaque in A is a duplicate of an

OCTET STRING within the opaque in P.

If a certificate has a PsidSspRange A for which the ssp field is all, A is consistent with the issuing certificate

if the issuing certificate contains a PsidSspRange P for which the following holds:

 (OPTION 1) A SubjectPermissions field indicating the choice all and no PsidSspRange field

containing the psid field in A;

 (OPTION 2) A PsidSspRange P for which the psid field in P is equal to the psid field in A and

the sspRange field in P indicates all.

For consistency rules for other types of SspRange, see the following subclauses.

NOTE— The choice “all” may also be indicated by omitting the SspRange in the enclosing PsidSspRange structure.

Omitting the SspRange is preferred to explicitly indicating “all”.

Critical information fields:

 If present, this is a critical information field as defined in 5.2.5. An implementation that does not

recognize the indicated CHOICE when verifying a signed SPDU shall indicate that the signed SPDU

is invalid.

 If present, opaque is a critical information field as defined in 5.2.5. An implementation that does

not support the number of OCTET STRINGs in opaque when verifying a signed SPDU shall

indicate that the signed SPDU is invalid. A compliant implementation shall support opaque fields

containing at least eight entries.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

81

6.4.36 BitmapSspRange

 BitmapSspRange ::= SEQUENCE {

 sspValue OCTET STRING (SIZE(1..32)),
 sspBitmask OCTET STRING (SIZE(1..32)),
 }

This structure represents a bitmap representation of a SSP. The sspValue indicates permissions. The

sspBitmask contains an octet string used to permit or constrain sspValue fields in issued

certificates. The sspValue and sspBitmask fields shall be of the same length.

Consistency with issuing certificate.

If a certificate has an PsidSspRange value P for which the sspRange field is bitmapSspRange, P is

consistent with the issuing certificate if the issuing certificate contains one of the following:

 (OPTION 1) A SubjectPermissions field indicating the choice all and no PsidSspRange field

containing the psid field in P;

 (OPTION 2) A PsidSspRange R for which the following holds:

 The psid field in R is equal to the psid field in P and one of the following is true:

 EITHER The sspRange field in R indicates all.

 OR The sspRange field in R indicates bitmapSspRange and for every bit set to 1 in

the sspBitmask in R:

 The bit in the identical position in the sspBitmask in P is set equal to 1, AND

 The bit in the identical position in the sspValue in P is set equal to the bit in that

position in the sspValue in R.

Reference ETSI TS 103 097 [B7] for more information on bitmask SSPs.

6.4.37 VerificationKeyIndicator

 VerificationKeyIndicator ::= CHOICE {

 verificationKey PublicVerificationKey,

 reconstructionValue EccP256CurvePoint,

 …

 }

The contents of this field depend on whether the certificate is an implicit or an explicit certificate.

 verificationKey is included in explicit certificates. It contains the public key to be used to

verify signatures generated by the holder of the Certificate.

 reconstructionValue is included in implicit certificates. It contains the reconstruction value,

which is used to recover the public key as specified in SEC 4 and 5.3.2.

Critical information fields: If present, this is a critical information field as defined in 5.2.5. An

implementation that does not recognize the indicated CHOICE for this type when verifying a signed SPDU

shall indicate that the signed SPDU is invalid.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

82

6.4.38 PublicVerificationKey

 PublicVerificationKey ::= CHOICE {

 ecdsaNistP256 EccP256CurvePoint,

 ecdsaBrainpoolP256r1 EccP256CurvePoint,

 ... ,

 ecdsaBrainpoolP384r1 EccP384CurvePoint

 }

This structure represents a public key and states with what algorithm the public key is to be used.

Cryptographic mechanisms are defined in 5.3.

An EccP256CurvePoint or EccP384CurvePoint within a PublicVerificationKey structure is invalid if it

indicates the choice x-only.

Critical information fields:

 If present, this is a critical information field as defined in 5.2.5. An implementation that does not

recognize the indicated CHOICE when verifying a signed SPDU shall indicate that the signed SPDU

is invalid.

7. Certificate revocation lists (CRLs) and the CRL Verification Entity

7.1 General

Clause 7 specifies the certificate revocation list (CRL) Verification Entity. This is a service that, by invoking

the SDS and SSME, updates local stores of the revocation information whose use is specified in 5.1.3. In this

clause:

 7.2 specifies the CRL Verification Entity.

 7.3 specifies the format of an IEEE 1609.2 CRL.

 7.4 specifies the use of IEEE 1609.2 mechanisms to authenticate an IEEE 1609.2 CRL, using the

IEEE 1609.2 security profile framework specified in C.2.

7.2 CRL Verification Entity specification

The CRL Verification Entity processes and stores incoming CRLs. It receives the CRLs by mechanisms

outside the scope of this standard. It shall verify a received CRL as valid by the criteria of 7.4. If the CRL is

valid, the CRL Verification Entity shall pass the revocation information contained in the CRL to the SDEE

for storage. Storage of revocation information in this standard is supported by the primitives SSME-

AddHashIdBasedRevocation.request, SSME-AddIndividualLinkageBasedRevocation.request, SSME-

AddGroupLinkageBasedRevocation.request, and SSME-AddRevocationInfo.request.

CRL Verification Entity activities are illustrated in Figure 17.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

83

Data Plane
CRL Verification

Entity
SSME

Secure Data

Service

Sec-SignedDataVerification.confirm

Sec-SignedDataVerification.request

CRL

SME-
AddHashIdBasedRevo-

cation.request

SME-
AddHashIdBasedRevo-

cation.confirm

SME-AddIndividual-
LinkageBasedRevo-

cation.request

SME-
AddGroupLinkageBase

dRevocation.request

SME-
AddGroupLinkageBase

dRevocation.confirm

A
t

le
a

s
t

o
n

e
 o

n
 s

u
c
c
e

s
s

Figure 17 —CRL Verification Entity

7.3 Data structures

7.3.1 General

Subclause 7.3 specifies the CRL contents using ASN.1. Subclause B.3 provides the complete ASN.1 module

for CRLs. In the case of a conflict, 7.3 takes precedence.

For linkage ID-based CRLs, the CRL encodes the information fields specified in 5.1.3.4. Rather than listing

the information fields individually for each entry, the fields are nested to provide a more compact encoding

with those fields that are anticipated to have the fewest distinct values provided on the outer layers of the

nesting. In particular, the CRL design anticipates that CAs organize certificate issuance such that all

certificates that are potentially on the same CRL (i.e., with the same crlSeries and cracaId values) use

the same iCert value at the same time.

7.3.2 CrlContents

CrlContents ::= SEQUENCE {

 version Uint8 (1),

 crlSeries CrlSeries,

 crlCraca HashedId8,

 issueDate Time32,

 nextCrl Time32,

 priorityInfo CrlPriorityInfo,

 typeSpecific CHOICE {

 fullHashCrl ToBeSignedHashIdCrl,

 deltaHashCrl ToBeSignedHashIdCrl,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

84

 fullLinkedCrl ToBeSignedLinkageValueCrl,

 deltaLinkedCrl ToBeSignedLinkageValueCrl,

 ...

 }

}

The fields in this structure have the following meaning:

 version is the version number of the CRL. For this version of this standard it is 1.

 crlSeries represents the CRL series to which this CRL belongs. This is used to determine whether

the revocation information in a CRL is relevant to a particular certificate as specified in 5.1.3.2.

 crlCraca contains the low-order eight octets of the hash of the certificate of the Certificate

Revocation Authorization CA (CRACA) that ultimately authorized the issuance of this CRL. This is

used to determine whether the revocation information in a CRL is relevant to a particular certificate

as specified in 5.1.3.2. In a valid signed CRL as specified in 7.4 the crlCraca is consistent with

the associatedCraca field in the Service Specific Permissions as defined in 7.4.3.3. The

HashedId8 is calculated with the whole-certificate hash algorithm, determined as described in 6.4.3.

 issueDate specifies the time when the CRL was issued.

 nextCrl contains the time when the next CRL with the same crlSeries and crlCraca is

expected to be issued. The CRL is invalid unless nextCrl is strictly after issueDate. This field

is used to set the expected update time for revocation information associated with the (crlCraca,

crlSeries) pair as specified in 5.1.3.6.

 priorityInfo contains information that assists devices with limited storage space in determining

which revocation information to retain and which to discard.

 typeSpecific contains the CRL body:

 fullHashCrl contains a full hash-based CRL, i.e., a listing of the hashes of all certificates

that:

 contain the indicated cracaId and crlSeries values, and

 are revoked by hash, and

 have been revoked, and

 have not expired.

 deltaHashCrl contains a delta hash-based CRL, i.e., a listing of the hashes of all certificates

that:

 contain the specified cracaId and crlSeries values, and

 are revoked by hash, and

 have been revoked since the previous CRL that contained the indicated cracaId and

crlSeries values.

 fullLinkedCrl contains a full linkage ID-based CRL, i.e., a listing of the individual and/or

group linkage data for all certificates that:

 contain the indicated cracaId and crlSeries values, and

 are revoked by linkage data, and

 have been revoked, and

 have not expired.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

85

 deltaLinkedCrl contains a delta linkage ID-based CRL, i.e., a listing of the individual

and/or group linkage data for all certificates that:

 contain the specified cracaId and crlSeries values, and

 are revoked by linkage data, and

 have been revoked since the previous CRL that contained the indicated cracaId and

crlSeries values.

7.3.3 CrlPriorityInfo

CrlPriorityInfo ::= SEQUENCE {

 priority Uint8 OPTIONAL,

 ...

}

This data structure contains information that assists devices with limited storage space in determining which

revocation information to retain and which to discard.

 priority indicates the priority of the revocation information relative to other CRLs issued for

certificates with the same cracaId and crlSeries values. A higher value for this field indicates

higher importance of this revocation information.

NOTE—This mechanism is for future use; details are not specified in this version of the standard.

7.3.4 ToBeSignedHashIdCrl

ToBeSignedHashIdCrl ::= SEQUENCE {

 crlSerial Uint32,

 entries SequenceOfHashBasedRevocationInfo,

 ...

}

This data structure represents information about a revoked certificate.

 crlSerial is a counter that increments by 1 every time a new full or delta CRL is issued for the

indicated crlCraca and crlSeries values.

 entries contains the individual revocation information items.

7.3.5 HashBasedRevocationInfo

 HashBasedRevocationInfo ::= SEQUENCE {

 id HashedId10,

 expiry Time32,

 ...

 }

 SequenceOfHashBasedRevocationInfo ::=

 SEQUENCE OF HashBasedRevocationInfo

In this structure:

 id is the CertId10 identifying the revoked certificate. The HashedId10 is calculated with the whole-

certificate hash algorithm, determined as described in 6.4.3.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

86

 expiry is the value computed from the validity period’s start and duration values in that certificate.

7.3.6 ToBeSignedLinkageValueCrl

ToBeSignedLinkageValueCrl ::= SEQUENCE {

 iRev IValue,

 indexWithinI Uint8,

 individual SequenceOfJMaxGroup OPTIONAL,

 groups SequenceOfGroupCrlEntry OPTIONAL,

 ...

}

(WITH COMPONENTS {..., individual PRESENT} |

 WITH COMPONENTS {..., groups PRESENT})

In this structure:

 iRev is the value iRev used in the algorithm given in 5.1.3.4. This value applies to all linkage-based

revocation information included within either indvidual or groups.

 indexWithinI is a counter that is set to 0 for the first CRL issued for the indicated combination

of crlCraca, crlSeries, and iRev, and increments by 1 every time a new full or delta CRL is

issued for the indicated crlCraca and crlSeries values without changing iRev.

 individual contains individual linkage data.

 groups contains group linkage data.

7.3.7 JMaxGroup

JMaxGroup ::= SEQUENCE {

 jmax Uint8,

 contents SequenceOfLAGroup,

 ...

}

SequenceOfJMaxGroup ::= SEQUENCE OF JMaxGroup

In this structure:

 jMax is the value jMax used in the algorithm given in 5.1.3.4. This value applies to all linkage-based

revocation information included within contents.

 contents contains individual linkage data.

7.3.8 LAGroup

LAGroup ::= SEQUENCE {

 la1Id LaId,

 la2Id LaId,

 contents SequenceOfIMaxGroup

 ...

}

SequenceOfLAGroup ::= SEQUENCE OF LAGroup

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

87

In this structure:

 la1Id is the value LinkageAuthorityIdentifier1 used in the algorithm given in 5.1.3.4. This value

applies to all linkage-based revocation information included within contents.

 la2Id is the value LinkageAuthorityIdentifier2 used in the algorithm given in 5.1.3.4. This value

applies to all linkage-based revocation information included within contents.

 contents contains individual linkage data.

7.3.9 IMaxGroup

IMaxGroup ::= SEQUENCE {

 iMax Uint16,

 contents SequenceOfIndividualRevocation

 ...

}

SequenceOfIMaxGroup ::= SEQUENCE OF IMaxGroup

In this structure:

 iMax indicates that for the entries in contents, revocation information need no longer be

calculated once iCert > iMax as the holder is known to have no more valid certs at that point. iMax

is not directly used in the calculation of the linkage values but is used to determine when revocation

information can safely be deleted.

 contents contains individual linkage data.

7.3.10 IndividualRevocation

IndividualRevocation ::= SEQUENCE {

 linkageSeed1 LinkageSeed,

 linkageSeed2 LinkageSeed,

 ...

}

SequenceOfIndividualRevocation ::= SEQUENCE OF IndividualRevocation

In this structure:

 linkageSeed1 is the value LinkageSeed1 used in the algorithm given in 5.1.3.4.

 linkageSeed2 is the value LinkageSeed2 used in the algorithm given in 5.1.3.4.

7.3.11 GroupCrlEntry

GroupCrlEntry ::= SEQUENCE {

 iMax Uint16,

 la1Id LaId,

 linkageSeed1 LinkageSeed,

 la2Id LaId,

 linkageSeed2 LinkageSeed,

 ...

}

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

88

SequenceOfGroupCrlEntry ::= SEQUENCE OF GroupCrlEntry

In this structure:

 iMax indicates that for these certificates, revocation information need no longer be calculated once

iCert > iMax as the holders are known to have no more valid certs for that (crlCraca,

crlSeries) at that point.

 la1Id is the value LinkageAuthorityIdentifier1 used in the algorithm given in 5.1.3.4. This value

applies to all linkage-based revocation information included within contents.

 linkageSeed1 is the value LinkageSeed1 used in the algorithm given in 5.1.3.4.

 la2Id is the value LinkageAuthorityIdentifier2 used in the algorithm given in 5.1.3.4. This value

applies to all linkage-based revocation information included within contents.

 linkageSeed2 is the value LinkageSeed2 used in the algorithm given in 5.1.3.4.

7.3.12 LaId

 LaId ::= OCTET STRING (SIZE(2))

This structure contains a LA Identifier for use in the algorithms specified in 5.1.3.4.

7.3.13 LinkageSeed

 LinkageSeed ::= OCTET STRING (SIZE(16))

This structure contains a linkage seed value for use in the algorithms specified in 5.1.3.4.

7.4 CRL: 1609.2 Security envelope

7.4.1 General

A signed CRL is a valid Ieee1609Dot2Data whose content field is of type signedData. The Signed-

DataPayload structure within the signed CRL has no extDataHash field and the data field contains an

Ieee1609Dot2Data whose content field is of type unsecuredData and contains a CrlContents.

A signed CRL may be created via the Sec-SignedData.request primitive, passing the COER-encoded

CrlContents as the UnsecuredData parameter. The fields within the SignedData structure and the parameters

passed to Sec-SignedData.request are specified in this subclause using the IEEE 1609.2 security profile

defined in C.2.

7.4.2 Consistency criteria

A valid signed CRL meets the validity criteria of Clause 5. In addition, as discussed in 5.1.3.2 and illustrated

in Figure 11, a valid signed CRL also meets one of the following conditions:

 The CRL was signed by the CRACA indicated by the crlCraca, or

 The CRL was signed by a certificate which was issued by the CRACA indicated by the crlCraca.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

89

7.4.3 Service Specific Permissions and associated consistency criteria

7.4.3.1 General

The following Service Specific Permissions structure is defined for use by a CRL signer. These subclauses

provide a specification of each data type in ASN.1.

CRL signing is identified by the PSID value allocated for CRL signing in IEEE Std 1609.12. The SSP shall

be encoded with COER when included in the ServiceSpecificPermissions field of a certificate.

7.4.3.2 CrlSsp

 CrlSsp::= SEQUENCE {

 version Uint8(1),

 associatedCraca CracaType,

 crls PermissibleCrls,

 ...

 }

In this type:

 version is the version number of the SSP and is 1 for this version of the SSP.

 associatedCraca identifies the relationship between this certificate and the CRACA. If

associatedCraca = isCraca, this certificate is the CRACA certificate and signs CRLs for

certificates which chain back to this certificate. If associatedCraca = issuerIsCraca, the

issuer of this certificate is the CRACA and this certificate may sign CRLs for certificates which chain

back to its issuer.

 crls identifies what type of CRLs may be issued by the certificate holder.

7.4.3.3 CracaType

 CracaType ::= ENUMERATED {isCraca, issuerIsCraca}

This type is used to determine the validity of the crlCraca field in the CrlContents structure.

 If this takes the value isCraca, the crlCraca field in the CrlContents structure is invalid unless

it indicates the certificate that signs the CRL.

 If this takes the value issuer, the isCracaDelegate field in the CrlContents structure is invalid

unless it indicates the certificate that issued the certificate that signs the CRL.

7.4.3.4 PermissibleCrls

 PermissibleCrls ::= SEQUENCE OF CrlSeries

This type is used to determine the validity of the crlSeries field in the CrlContents structure. The

crlSeries field in the CrlContents structure is invalid unless that value appears as an entry in the

SEQUENCE contained in this field.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

90

7.4.4 Security profile

7.4.4.1 IEEE 1609.2 security profile identification

Field Value Notes

Security Profile

Version

IEEE Std 1609.2a-2017

Name “IEEE 1609.2 security profile for Certificate Revocation List”

PSIDs The value indicated in IEEE Std 1609.12 for “Certificate

Revocation List Application”

Other considerations

7.4.4.2 Sending

This is for information only; this standard does not specify a CRL generation application.

Field Value Notes

Sign Data True All CRLs are signed

Signed Data in Payload True CRL is contained within the encapsulating SignedData

External Data False

External Data Source N/a

External Data Hash Algorithm N/a

Set Generation Time in Security Headers False Included in CRL payload

Set Generation Location in Security Headers False Not used

Set Expiry Time in Security Headers False Included in CRL payload

Signed SPDU Lifetime N/a Not used as expiry is not used

Signer Type Self Prohibited CRLs are signed with a certificate

Signer Type Self Permitted N/a Signer type self is prohibited

Verification Key Location for Signer Type

Self

N/a Signer type self is prohibited

Signer Identifier Policy Type Simple Signer type self is prohibited

Simple Signer Identifier Policy: Minimum

InterCert Time

All

Simple Signer Identifier Policy: Exceptions None

Simple Signer Identifier Policy: Signer

Identifier Cert Chain Length

1 1 is enough to get back to the CRACA

Text Signer Identifier Policy N/a

Sign With Fast Verification True Allow fast verification

EC Point Format Compressed Reduce key size

p2pcd_flavor None Full cert chain is attached

p2pcd_maxResponseBackoff N/a

p2pcd_responseActiveTimeout N/a

p2pcd_requestActiveTimeout N/a

p2pcd_observedRequestTimeout N/a

p2pcd_currentlyUsedTriggerCertificateTime N/a

p2pcd_responseCountThreshold N/a

Repeat Signed SPDUs N/a CRL transmission is different from the CRL signing

application, so this field doesn’t apply

Time Between Signing N/a CRL transmission is different from the CRL signing

application, so this field doesn’t apply

Encrypt Data False

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

91

7.4.4.3 Receiving

Field Value Notes

Use Preprocessing False CRLs have the full certificate chain and do not

use P2PCD, so no need for preprocessing

Verify Data True

Maximum Full Certificate Chain Length 8

Relevance: Replay False Replayed CRLs are not an attack

Relevance: Generation Time in Past False Generation time of CRL is not used to decide

whether or not it is relevant

Validity Period N/a

Relevance: Generation Time in Future False CRLs could conceivably be issued to take effect

in the future

Acceptable Future Data Period N/a

Generation Time Source Payload Generation time is compared with CRL signing

cert validity period

Relevance: Expiry Time N/a CRLs do not expire as such—even if another

CRL is issued, the previous CRL is still valid for

use

Expiry Time Source Payload

Consistency: Generation Location False Generation location is irrelevant for CRLs

Relevance: Generation Location Distance N/a

Validity Distance N/a

Generation Location Source N/a

Additional Geographic Consistency

Conditions

False CRL does not carry any geographic information.

Identified Region Representation Accuracy N/A CRL does not require location validity checks

Overdue CRL Tolerance 1 week The revocation list for a CRL signer should

never be overdue as the CRL for a CRL signer

can be distributed by the same mechanism as the

CRL signed by that CRL signer

Relevance: Certificate Expiry True A CRL signed with an expired certificate should

not be accepted

Encrypted Data False CRLs are not encrypted

7.4.4.4 Security management

Field Value Notes

Signing Key Algorithm ecdsaNistP256,

ecdsaBrainpoolP

256r1,

ecdsaBrainpoolP

384r1

Encryption Algorithm n/a

Implicit or Explicit Certificates Implicit

EC Point Format Compressed

Supported Geographic Regions None CRLs are not limited by geographic region

Maximum Full Certificate -

Chain Length

7 There may be 8 certificates in total in the chain (and 7 inter-

certificate gaps).

Use Individual Linkage ID False CRL signers use identified certs and are revoked by hash if

necessary

Use Group Linkage ID False CRL signers use identified certs and are revoked by hash if

necessary

Signature Algorithms in Chain

or CRL

ecdsaNistP256,

ecdsaBrainpoolP

256r1,

ecdsaBrainpoolP

384r1

May be constrained by the security profile for the relevant

application

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

92

7.4.4.5 Other

Field Value Notes

Fields that may be subject to

policy update

Overdue CRL Tolerance, Signer Identifier

Cert Chain Length

7.4.5 ASN.1

The following ASN.1 expresses a secured CRL consistent with the security profile above.

CrlPsid ::= Psid(256)

SecuredCrl ::= Ieee1609Dot2Data (WITH COMPONENTS {...,

 content (WITH COMPONENTS {

 signedData (WITH COMPONENTS {...,

 tbsData (WITH COMPONENTS {

 payload (WITH COMPONENTS {...,

 data (WITH COMPONENTS {...,

 content (WITH COMPONENTS {

 unsecuredData (CONTAINING CrlContents)

 })

 })

 }),

 headerInfo (WITH COMPONENTS {...,

 psid (CrlPsid),

 generationTime ABSENT,

 expiryTime ABSENT,

 generationLocation ABSENT,

 p2pcdLearningRequest ABSENT,

 missingCrlIdentifier ABSENT,

 encryptionKey ABSENT

 })

 })

 })

 })

})

8. Peer-to-peer certificate distribution (P2PCD)

8.1 General

Clause 8 specifies peer-to-peer certificate distribution (P2PCD), which is a functionality obtained by the

cooperation of the P2PCD Entity, the SSME, the SDS, and an appropriately behaving SDEE referred to as

the trigger SDEE.

P2PCD is initiated when a SDEE receives a signed SPDU for which WAVE Security Services are unable to

construct a certificate chain due to not recognizing the issuer of the topmost certificate provided within the

signed SPDU. The received SPDU is referred to as a trigger SPDU.

The WAVE Security Services instance that received the trigger SPDU uses P2PCD learning requests to

request peer instances to provide the necessary certificates to complete the chain. A P2PCD learning request

is a field which the SDS inserts into SPDUs when signing them on behalf of the SDEE that received the

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

93

original SPDU. P2PCD learning responses are sent as PDUs by the P2PCD Entity to P2PCD Entities on peer

devices. The design of the P2PCD service includes throttling mechanisms to reduce the risk of channel

flooding by limiting the number of responses to a single request.

P2PCD is supported by functionality within the SDS and the SSME as well as by the P2PCD Entity. This

clause specifies interactions between all three of these entities to support P2PCD. The primitives specified in

Clause 9 support these interactions.

In this clause:

 8.2 specifies P2PCD operations.

 8.3 specifies the P2PCD Entity.

 8.4 specifies data structures and encoding for PDUs created and consumed by the P2PCD Entity.

PDUs created and consumed by the P2PCD Entity are not signed or encrypted and so are not encapsulated

within an Ieee1609Dot2Data.

The IEEE 1609.2 security profile (see Annex C) provides a means for SDEE specifies to specify whether

P2PCD is used by an SDEE, and if so what flavor is used and what parameters are provided.

8.2 P2PCD operations

8.2.1 General

The following is an overview of P2PCD operations.

There are two “flavors” of P2PCD, “inline” and “out-of-band”. In inline P2PCD, the certificates are included

directly in signed SPDUs from the trigger SDEE; in out-of-band P2PCD, the certificates are transmitted in

separate PDUs. In both flavors:

 Signed SPDUs are received by a trigger SDEE and processed by the SDS. In the course of this

processing:

 If the signed SPDU indicates that the sender is using certificates issued by a CA unknown to

the local SDEE, then under the conditions described in 8.2.4.1 the P2PCD request process is

triggered.

 If the signed SPDU contains a P2PCD learning request, then under the conditions described in

8.2.4.2 the P2PCD response process is triggered.

 The P2PCD Entity (P2PCDE) monitors the data plane for incoming P2PCD learning responses.

These responses are used to learn CA certificates and to determine whether or not to send responses

to received requests. The P2PCDE carries out this monitoring even if it has not recently requested

the sending of a P2PCD learning request.

 In the P2PCD request process, the SDS inserts a P2PCD learning request field in signed SPDUs from

the trigger SDEE. The P2PCD learning request field is defined in 6.3.9. To control SPDU size, the

P2PCD learning request is only inserted under the conditions specified in 8.2.4.1.

The differences between the inline and out-of-band approaches are:

 Request:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

94

 In the out-of-band approach, P2PCD only supports requesting CA certificates. In the inline

approach, the P2PCD request process is also triggered if the signed SPDU has a SignerInfo of

type digest and the end-entity certificate indicated by this SignerInfo is unknown to the local

SDEE. In other words, the inline approach can be used to request end-entity certificates.

 Response:

 In the out-of-band P2PCD response process, the P2PCDE is requested by the SDS to send

P2PCD learning responses. The P2PCD learning response is defined in 8.4.1 and contains the

requested certificates. It is sent to a broadcast address to allow the certificates to be learned by

other P2PCDE instances and to allow other responders to determine how many responses have

been sent. To reduce the risk of the channel being flooded by responses to a single request, the

P2PCD learning response is only sent under the conditions specified in 8.2.4.2, i.e., only if some

threshold number of responses has not been observed since the relevant request. Out-of-band

responses are specified in 8.2.4.2.2.

 In the inline P2PCD response process, the SDS inserts P2PCD learning responses into the next

SPDU sent by the SDEE. To reduce the risk of the channel being flooded by responses to a

single request, the P2PCD learning response is only sent under the conditions specified in

8.2.4.2, i.e., only if some threshold number of responses has not been observed since the

relevant request. Inline responses are specified in 8.2.4.2.3.

An example of information flows to support out-of-band P2PCD is given in the illustrative Figure 18. In the

figure, each box is a WAVE device or set of WAVE devices, with each device hosting the functional entities

specified above. A breakdown of the information flows showing the roles played by each functional entity is

given in the illustrative Figure 20.

a) The trigger SPDU sender, a WAVE device, sends a trigger SPDU which is received by the other

WAVE devices including:

1) The trigger SPDU receiver

2) Other WAVE devices that will later play a responder role

3) Other WAVE devices that will later not play a responder role

b) One of the receivers of the trigger SPDU takes on the role of P2PCD requester and sends a P2PCD

learning request. This is received by all the WAVE devices.

c) The original sender, and the other responders, all select a random backoff time and send responses

once that backoff time has expired. Responders stop sending responses once they have reached a

prescribed configurable threshold number of responses as specified in the SDEE specification, for

example in the IEEE 1609.2 security profile for that SDEE.

Other patterns are possible, depending on how many possible requesters hear the original trigger SPDU, how

many possible responders hear the request, and the order in which the responders respond.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

95

Trigger SPDU

receiver (P2PCD

requester)

Other responders
Other WAVE

devices

P2PCD response

Trigger SPDU

sender (P2PCD

responder)

Certificate Learning
Request within SPDU

Certificate Learning
Request within SPDU

P2PCD responseP2PCD response

P2PCD responseP2PCD response

Trigger SPDU

Figure 18 —Overview of information flows for P2PCD

8.2.2 Functional entities

Figure 19 shows the functional entities on a device that support peer-to-peer certificate distribution.

 The data plane is used to exchange PDUs between instances of the P2PCDE and between instances

of the trigger SDEE.

 The trigger SDEE sends and/or receives signed SPDUs. Fields in the signed SPDUs are used to

transfer P2PCD learning requests between peer SSMEs.

 The trigger SDEE indicates support for P2PCD using parameters to primitives across the Sec-

SAP. Thus, part of the specification of a SDEE is an indication of whether the SDEE acts as a

trigger SDEE within P2PCD. The 1609.2 security profile (see Annex C) provides a means for

an application specification to specify whether it makes use of P2PCD and if so what values

are taken by the parameters defined in 8.2.3.

 The SDS provides the following functionality:

 A trigger SDEE passes received signed SPDUs to the SDS via the Sec-SAP for processing to

determine if P2PCD needs to be triggered, and to request that P2PCD learning requests are

included in the trigger SDEE’s signed SPDUs if determined to be appropriate by the SSME.

 The SDS provides information about incoming SPDUs to the SSME via the SSME-Sec-SAP to

enable it to determine whether to include P2PCD learning requests in SPDUs.

 The SDS includes P2PCD learning requests in SPDUs when so requested by the SSME via the

SSME-Sec-SAP.

 In the inline case, the SDS includes requested certificates in SPDUs when so requested by the

SSME via the SSME-Sec-SAP.

 The SSME provides the following functionality:

 The SDS provides information about incoming SPDUs to the SDS via the SSME-Sec-SAP to

enable it to determine whether to include P2PCD learning requests in SPDUs.

 The SSME requests the SDS via the SSME-Sec-SAP to include P2PCD learning requests in

SPDUs.

 In the inline case, the SSME requests the SDS via the SSME-Sec-SAP to include requested

certificates in SPDUs.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

96

 In the out-of-band case, the SSME and the P2PCDE communicate via the SSME-SAP to store

of certificates received via PCPCD learning response PDUs; to register the P2PCDE to send

P2PCD learning responses on behalf of a particular trigger SDEE; and to request the P2PCD

Entity to send a P2PCD learning response on behalf of a trigger SDEE for which it has

registered.

 The P2PCD Entity is only active in the out-of-band case. It registers with the SSME to receive

requests to send P2PCD learning responses, sends and receives P2PCD learning responses over the

data plane; and requests the SSME to store the contents of received learning responses.

A P2PCD learning request is triggered by a trigger SPDU received by the trigger SDEE, and is included in a

signed SPDU generated by the same trigger SDEE. The SDS determines that incoming and outgoing SPDUs

are associated with the same SDEE using the mechanisms of 4.2.2.1.

The illustrative Figure 20 shows information flows for an instance of P2PCD, showing the information flows

within instances of WAVE Security Services as well as between WAVE devices.

S
S

M
E

S
D

S

S
S

M
E

-
S

e
c
-S

A
P

SSME-
SAP

Sec-SAP
D

a
ta

 P
la

n
e

P2PCD Entity Trigger SDEE

Figure 19 —Functional entities involved in peer-to-peer certificate distribution

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

97

Responder

Trigger

SDEE
SDS

Preprocessing

Trigger SPDU

P2PCDE SSME

Requester

Trigger

SDEE
SDSP2PCDE SSME

Preprocessing

Request signed SPDU

Add learning
request?

Signed SPDU including
learning request

Learning request

Signed SPDU including
learning request

Certificate is

unknown

Preprocessing

Preprocessing

P2PCD response

is appropriate –

wait for timeout

Response from other responders

Certificate is

known

Other

responder

Count

res-

pon-

ses

Store

Timeout expires

Response

Certificate is

already known,

no action

necessary

Figure 20 —Overview of information flows showing functional entities

8.2.3 Configuration parameters within SSME

P2PCD uses the following configuration parameters, which are managed by the SSME. These parameters

may be SDEE-specific, or may be obtained from a system specification covering multiple SDEEs. They are

configured by SSME-P2pcdConfiguration.request and SSME-P2pcdConfiguration.confirm. Recommended

values are included in the discussion of these values in the send-side security profile in C.2.1.3.1.

 p2pcd_flavor (SDEE ID s): An enumerated value taking the value “inline”, “Out of Band”, or

“none” indicating which flavor of P2PCD is in use for the indicated SDEE.

The following parameters are used only if p2pcd_flavor(s) is “out of band”:

 p2pcd_requestActiveTimeout (SDEE ID s): After the SSME requests the insertion of a

P2PCD learning request for any particular certificate, it does not request the insertion of another

P2PCD learning request for the same certificate and for the same SDEE s for at least time

p2pcd_requestActiveTimeout. This may take the value “0”, indicating that there is no

restriction on including the same request in consecutive SPDUs.

 p2pcd_observedRequestTimeout (SDEE ID s): After the SSME observes a P2PCD learning

request for any particular certificate in an incoming SPDU for s, it does not request the insertion of a

P2PCD learning request for that certificate in an outgoing SPDU for s for at least time

p2pcd_requestActiveTimeout. This may take the value “0”, indicating that there is no

restriction on including a request even if the same request has recently been observed in a received

SPDU.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

98

 p2pcd_maxResponseBackoff (SDEE ID s): The maximum time that the SSME waits before

deciding whether or not to request sending of a P2PCD learning response for a P2PCD learning

request received via s. This may take the value “0”, indicating that unless other exception conditions

are met the SSME will send the response at the first opportunity.

 p2pcd_responseActiveTimeout (SDEE ID s): After the SSME triggers the response process

in response to a certifiate request received via s, it does not trigger another response process until a

time equal to p2pcd_responseActiveTimeout has passed. This may take the value “0”,

indicating that responses may be triggered whenever a request is received via s whether or not another

request has recently been received via s.

 p2pcd_currentlyUsedTriggerCertificateTime (SDEE ID s): The only requested

certificates for which the SSME triggers a P2PCD learning response process are those for which,

within a time indicated by p2pcd_currentlyUsedTriggerCertificateTime, the SDS

signed a SPDU for s using a certificate that had the requested certificate in its chain. This is only used

in the out-of-band case.

 p2pcd_responseCountThreshold (SDEE ID s): The number used to determine whether

p2pcdResponseCount is sufficiently low to allow the SSME to request generation of a P2PCD

response to a particular request received via s.

8.2.4 Operations

8.2.4.1 Requester role

8.2.4.1.1 Out of band

This subclause specifies requester role operations for the out-of-band flavor of P2PCD for a single SDEE.

Subclause D.4 provides an example of how P2PCD may be implemented using the primitives defined in this

standard.

a) The P2PCD learning request process starts when a trigger SDEE requests (via Sec-SecureData-

Preprocessing.request) that the SDS preprocesses a signed SPDU with SignerIdentifier of type

certificate.

1) In this case, denote by issuer the certificate that issued the highest certificate in the chain

contained in the SignerIdentifier, i.e., the certificate identified by the issuer field in that highest

certificate.

2) If issuer indicates a certificate that is not known to the SSME, i.e., a query of SSME-

CertificateInfo.request results in a Result Code from SSME-CertificateInfo.confirm of

“certificate not found”, then the SSME may trigger P2PCD request processing with respect to

issuer, unless at least one of the following exception conditions holds:

i) Exception: The SSME does not trigger request processing with respect to issuer if there

is an active request with respect to issuer at the current time, i.e., it is less than a time

p2pcd_requestActiveTimeout since the SSME last triggered request processing

with respect to issuer.

ii) Exception: An implementation of the SSME may have a limit on the number of P2PCD

learning requests that may be active simultaneously, i.e., the number of requests for which

it is less than p2pcd_requestActiveTimeout(s) since that request was issued. If

this is the case, the SSME does not trigger request processing if the number of active

requests is equal to that limit. An implementation of the SSME that supports P2PCD shall

support at least one active request and may support more.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

99

b) Upon triggering request processing with respect to issuer, the SSME causes the SDS to include a

P2PCD learning request for issuer in the next SPDU spdu signed for the trigger SDEE, unless one of

the following exceptions hold. The P2PCD learning request field is defined in 6.3.9.

1) Exception: If the SSME has been notified of a P2PCD learning request for issuer in the time

interval of length p2pcd_observedRequestTimeout before spdu is signed, the SSME

does not cause the P2PCD learning request to be included.

2) Exception: If there are multiple issuer certificates for which request processing has been

triggered and for which a P2PCD learning request has not been included within

p2pcd_requestActiveTimeout, the SSME includes a P2PCD learning request for only

one of those certificates. The mechanism for selecting the certificate to be requested is not

specified in this standard. The SSME may discard the values of issuer for which a request was

not included, or may store them for an implementation-specific period and insert a request for

a stored value of issuer in future signed SPDUs for the trigger SDEE.

c) When the PCPCDE receives a P2PCD learning response, it provides it to the SSME (via SSME-

AddCertificate.request). The SSME stores any previously unknown certificates contained in the

response, causing them to become known certificates.

d) The SSME does not cause a P2PCD learning request to be generated for a certificate that is already

known to the SSME.

Basic requester behavior, when there is only one certificate that may be the subject of the request, is illustrated

in Figure 21. Requester behavior when multiple certificates may be the subject of a request is illustrated in

Figure 22. Subclause D.4 provides additional figures breaking down the activities by functional elements and

identifying information flows between them.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

100

Figure 21 —P2PCD requester behavior within WAVE Security Services

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

101

Figure 22 —P2PCD requester behavior when multiple certificates may be
the subject of a request

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

102

8.2.4.1.2 Inline

This subclause specifies requester role operations for the inline flavor of P2PCD for a single SDEE.

a) The SDS maintains an internal array, p2pcd_inline_potentiallyRequestedCerts(s) of certificates that

might be the subject of a request by that SDEE. The array p2pcd_inline_potentiallyRequestedCerts(s)

is initialized to an empty array and set equal to the empty array every time the trigger SDEE requests

(via Sec-SignedData.request) the generation of a signed SPDU.

b) When a trigger SDEE requests (via Sec-SecureDataPreprocessing.request) that the SDS preprocesses

a signed SPDU sp:

1) If the SignerIdentifier field in sp indicates type digest:

i) If the digest is of a certificate that is not known to the SSME, i.e. a query of SSME-

CertificateInfo.request results in a Result Code from SSME-CertificateInfo.confirm of

“Certificate not found”, the SDS calculates the HashedId3 derived from digest and

adds it to p2pcd_inline_potentiallyRequestedCerts(s).

2) If the SignerIdentifier field in sp indicates type certificate:

i) If the issuer field in the highest certificate in the chain contained in the SignerIdentifier

indicates a certificate that is not known to the SSME, i.e., a query of SSME-

CertificateInfo.request with that field results in a Result Code from SSME-Certificate-

Info.confirm of “Certificate not found”, then the SDS calculates the HashedId3 derived

from issuer and adds it to p2pcd_inline_potentiallyRequestedCerts(s).

c) When a trigger SDEE requests (via Sec-SignedDataVerification.request) that the SDS verifies a

signed SPDU sp:

1) If Sec-SignedDataVerification.confirm returns the field Unrecognized Id, the SDS adds the

HashedId3 derived from the Unrecognized Id to p2pcd_inline_potentiallyRequestedCerts(s).

d) When the SDS is requested (via Sec-SignedData.request) to sign an SPDU on behalf of SDEE s:

1) If p2pcd_inline_potentiallyRequestedCerts(s) is not empty, the SDS selects one or more of the

entries in p2pcd_inline_potentiallyRequestedCerts(s) for inclusion in the signed SPDU. The

criteria for selection and the number of entries selected may be implementation-specific. The

entries are included in the inlineP2pcdRequest field.

2) The SDS sets the array p2pcd_inline_potentiallyRequestedCerts(s) to the empty array.

8.2.4.2 Responder role

8.2.4.2.1 General

This subclause specifies responder role operations for P2PCD for a single SDEE. Subclause D.4 provides an

example of how P2PCD may be implemented using the primitives defined in this standard.

8.2.4.2.2 Out of band

If the P2PCD out-of-band flavor is in use:

a) The P2PCD learning response process starts when a trigger SDEE requests (via Sec-SecureData-

Preprocessing.request) that the SDS preprocesses a signed SPDU containing a P2PCD learning

request.

1) If the P2PCD learning request indicates a CA certificate that is in the chain of a certificate that

has been used by the SDS to sign a SPDU within the time

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

103

p2pcd_currentlyUsedTriggerCertificateTime, denote this by requested. The

SSME triggers response processing with respect to requested unless at least one of the following

exceptions hold:

i) Exception: If the current time is less than p2pcd_responseActiveTimeout time

since the P2PCD learning response process was last triggered to respond to a request for

requested, the SSME does not trigger response processing.

b) When the P2PCD learning response process is triggered:

1) The SSME waits a random period of time less than or equal to p2pcd_maxResponse-

Backoff. It then generates and, via SSME-P2pcdResponseGeneration.indication, requests the

P2PCDE to send, a P2PCD learning response as defined in 8.4.1, unless the following exception

holds.

i) Exception: If, between the triggering of the response process with respect to requested

and the generation of the response, the P2PCDE observes a number of responses to the

request greater than or equal to p2pcd_responseCountThreshold, then the SSME

does not generate a response and does not request the P2PCDE to send any response.

P2PCDE observation of responses is specified in step c) below.

c) When the PCPCDE receives a P2PCD learning response, it provides it to the SSME (via SSME-

AddCertificate.request). The SSME records certificates which are the subject of an active response

process and increments the recorded number of responses to the relevant request.

Responder behavior is illustrated in Figure 23. Subclause D.4 provides additional figures breaking down the

activities by functional elements and identifying information flows between them.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

104

Receive Signed SPDU
containing P2PCD
learning request

Has the P2PCD learning response
process been triggered for that

certificate within
p2pcd_responseActiveTimeout?

Has the requested
certificate been used within

p2pcd_currentlyUsedTrigger-
CertificateTime?

Yes

No Action

No

Yes

Were fewer than
p2pcd_responseCountThreshold

responses observed?

No

No

Yes

Send response

Trigger P2PCD
learning response

process

Select backoff time t ≤
p2pcd_maxResponseBackoff

Wait for time t, observing
responses from P2PCDE

Responses

Figure 23 —Interactive form of P2PCD responder behavior within
WAVE Security Services

8.2.4.2.3 Inline

If the P2PCD inline flavor is in use, the P2PCD learning request may contain more than one entry. The

request consists of all the entries in the p2pcdLearningRequest field and the

additionalP2pcdRequest field in the HeaderInfo of a recently received signed SPDU. Operations

proceed as follows:

a) The SDS maintains an array, p2pcd_inline_requestedCerts(s), of certificates that have been requested

by the SDS supporting a particular SDEE s.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

105

b) The process starts with p2pcd_inline_requestedCerts(s) set equal to the empty array.

c) When the trigger SDEE requests (via Sec-SecureDataPreprocessing.request) that the SDS

preprocesses a signed SPDU containing a P2PCD learning request, all the P2PCD learning requests

from the signed SPDU are added to the array p2pcd_inline_requestedCerts(s).

d) When the trigger SDEE requests (via Sec-SecureDataPreprocessing.request) that the SDS

preprocesses a signed SPDU containing a requestedCertificate field:

1) The SDS determines whether the HashedId3 of the certificate in the

requestedCertificate field corresponds to any of the entries in

p2pcd_inline_requestedCerts(s). If this is the case, the SDS removes that entry from

p2pcd_inline_requestedCerts(s).

e) When SDS is requested (via Sec-SignedData.request) to sign an SPDU on behalf of SDEE s:

1) If p2pcd_inline_requestedCerts(s) contains an indicator of the certificate that was used by the

SDS to sign the most recent SPDU, then if the SDS creates a signed SPDU with the same

certificate, it uses a SignerIdentifier indicating the choice certificate and containing the

signing certificate.

2) If p2pcd_inline_requestedCerts(s) does not contain an indicator of the certificate that was used

by the SDS to sign the most recent SPDU, but does contain an indicator of a CA certificate

known to the SDS (i.e. a query of SSME-CertificateInfo.request with that field results in a

Result Code from SSME-CertificateInfo.confirm other than “Certificate not found” and that

certificate has non-empty certIssuePermissions field), then the SDS selects one of

those CA certificates and includes it in the requestedCertificate field of the signed

SPDU.

f) The SDS sets p2pcd_inline_requestedCerts(s) to the empty array.

8.2.5 SDEE specification considerations

A complete specification of a SDEE that uses WAVE Security Services includes a specification of whether

or not that SDEE uses P2PCD, and, if so, what the values are of the configuration parameters defined in

8.2.3. The IEEE 1609.2 security profile specified in Annex C may be used for this purpose. The specification

need not give fixed values for the parameters; they could, for example, be obtained from a system

specification covering multiple SDEEs.

8.2.6 Conformance

An implementation of WAVE Security Services may have a limit on the number of active P2PCD learning

request or response processes that are active at any one time. An implementation of WAVE Security Services

may also have a limit on the number distinct SDEEs for which it supports P2PCD. The Protocol

Implementation Conformance Statement (PICS) in A.2.3.3 allows suppliers to make a statement about the

numbers supported by an implementation. A conformant implementation of WAVE Security Services that

supports P2PCD learning requests shall support at least one active learning request at one time and may

support more. A conformant implementation of WAVE Security Services that supports P2PCD learning

responses shall support at least one active learning response at one time and may support more. A conformant

implementation of WAVE Security Services that supports P2PCD shall support P2PCD for at least one SDEE

(i.e., shall support at least one set of the SDEE-specific configuration parameters specified in 8.2.3) and may

support more.

8.3 P2PCD Entity specification

8.3.1 General

This subclause specifies the P2PCD Entity (P2PCDE). The P2PCDE:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

106

 Registers with the SSME to send or receive responses on behalf of specific SDEEs via SSME-

P2pcdResponseGenerationService.request.

 Sends P2PCD learning responses when so requested by the SSME via SSME-P2pcdResponse-

Generation.indication, as specified in 8.2.4.2.

 Receives P2PCD learning responses and passes the certificates received in P2PCD learning responses

to the SSME via SSME-AddCertificate.request, as specified in 8.2.4.1 and 8.2.4.2. Each certificate

in each response is provided to the SSME, even if it is a duplicate of one already received, to allow

the SSME to determine whether p2pcd_responseCountThreshold has been exceeded.

An implementation of the P2PCDE shall implement receiving P2PCD learning responses and passing them

to the SSME. An implementation of the P2PCDE may implement sending P2PCD learning responses.

8.3.2 Use within WSMP

If the P2PCD learning response is to be sent via WSMP with TPID equal to 0 or 1, the other parameters to

WSM-WaveShortMessage.request shall be set as indicated. Parameters not specified in the list below, such

as the channel to be used, are set as appropriate to the specific implementation. If some other TPID for WSMP

is used, or if some other networking or transport protocol is used, the parameters used are determined by

mechanisms out of scope for this standard.

 Provider Service Identifier is set to the PSID allocated for peer-to-peer distribution of security

management information in IEEE Std 1609.12.

 Peer MAC Address is set to the broadcast MAC address.

 WSM Data is set to the response.

8.4 Data structures

8.4.1 P2PCD response message

8.4.1.1 ASN.1 definition

The response message is defined by the following ASN.1 module:

IEEE1609dot2-Peer2Peer {iso(1) identified-organization(3) ieee(111)

standards-association-numbered-series-standards(2) wave-stds(1609)

dot2(2) management (2) peer-to-peer (1) major-version-2(2)}

--

**

--

-- Data types for Peer-to-peer distribution of IEEE P1609.2 support

data

--

-- Associated with a two-byte PSID to be assigned.

-- When broadcast over WSMP, to be encoded with COER.

--

--

**

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

EXPORTS ALL;

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

107

IMPORTS

 Uint8

FROM IEEE1609dot2BaseTypes {iso(1) identified-organization(3) ieee(111)

 standards-association-numbered-series-standards(2) wave-stds(1609)

 dot2(2) base(1) base-types(2) major-version-2(2)}

 Certificate

FROM IEEE1609dot2 {iso(1) identified-organization(3) ieee(111)

 standards-association-numbered-series-standards(2) wave-stds(1609)

 dot2(2) base(1) schema(1) major-version-2(2)}

;

Ieee1609dot2Peer2PeerPDU ::= SEQUENCE {

 version Uint8(1),

 content CHOICE {

 caCerts CaCertP2pPDU,

 ...

 }

}

CaCertP2pPDU::= SEQUENCE OF Certificate

END

8.4.1.2 Contents and encoding

The contents of the response are as follows:

 The choice caCerts is indicated.

 The caCerts field contains an array of certificates, such that:

 Each certificate is issued by the next certificate in the array.

 The first certificate in the array is the one indicated by the p2pcdLearningRequest value mci to

which the response message is responding (see 8.4.2).

 The final certificate in the array was issued by a root CA.

The response is encoded with COER.

8.4.2 The p2pcdLearningRequest field

The p2pcdLearningRequest field is a field in the HeaderInfo structure of an Ieee1609Dot2Data of type

signed, defined in 6.3.9.

The p2pcdLearningRequest value is a HashedId3, calculated directly from a certificate as specified in

HashedId3 or, equivalently, calculated from the HashedId8 of a certificate by taking the low-order three bytes

of the HashedId8 value. A p2pcdLearningRequest corresponds to a certificate or HashedId8 if it is the

HashedId3 derived from that certificate or HashedId8.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

108

9. Service primitives and functions

9.1 General comments and conventions

Clause 9 specifies mechanisms for applying 1609.2 security processing to datagrams using primitives defined

at Service Access Points (SAPs). The primitives defined at each SAP are summarized in Table 1 and specified

in the indicated subclause. The details of the implementation of the primitives and their exchange protocols

are not otherwise specified and are left as design decisions.

Primitives are specified as (request, confirm) pairs, where the confirm primitive returns the output from

WAVE Security Services obtained from processing the input provided to the corresponding request primitive,

or as indications from WAVE Security Services. Any processing that produces correct output on receipt of a

given set of inputs is conformant to the standard. “Correct output” is defined for each confirm primitive

below.

Where parameters are identified as optional, this indicates that they may be omitted. In a .request primitive,

the SDEE specification indicates via the WAVE Security Profile of Annex C which optional parameters

should be omitted. In a .confirm or .indication primitive, the primitive specification indicates how WAVE

Security Services determine which optional parameters to set.

Table 1 —Summary of primitives

SAP Primitive Specified in

Sec Sec-CryptomaterialHandle.request 9.3.1.1

Sec-CryptomaterialHandle.confirm 9.3.1.2

Sec-CryptomaterialHandle-GenerateKeyPair.request 9.3.2.1

Sec-CryptomaterialHandle-GenerateKeyPair.confirm 9.3.2.2

Sec-CryptomaterialHandle-StoreKeyPair.request 9.3.3.1

Sec-CryptomaterialHandle-StoreKeyPair.confirm 9.3.3.2

Sec-CryptomaterialHandle-StoreCertificate.request 9.3.4.1

Sec-CryptomaterialHandle-StoreCertificate.confirm 9.3.4.2

Sec-CryptomaterialHandle-StoreCertificateAndKey.request 9.3.5.1

Sec-CryptomaterialHandle-StoreCertificateAndKey.confirm 9.3.5.2

Sec-CryptomaterialHandle-Delete.request 9.3.6.1

Sec-CryptomaterialHandle-Delete.confirm 9.3.6.2

Sec-SymmetricCryptomaterialHandle.request 9.3.7.1

Sec-SymmetricCryptomaterialHandle.confirm 9.3.7.2

Sec-SymmetricCryptomaterialHandle-HashedId8.request 9.3.8.1

Sec-SymmetricCryptomaterialHandle-HashedId8.confirm 9.3.8.2

Sec-SymmetricCryptomaterialHandle-Delete.request 9.3.8.3

Sec-SymmetricCryptomaterialHandle-Delete.confirm 9.3.8.4

Sec-SignedData.request 9.3.9.1

Sec-SignedData.confirm 9.3.9.2

Sec-EncryptedData.request 9.3.10.1

Sec-EncryptedData.confirm 9.3.10.2

Sec-SecureDataPreprocessing.request 9.3.11.1

Sec-SecureDataPreprocessing.confirm 9.3.11.2

Sec-SignedDataVerification.request 9.3.12.1

Sec-SignedDataVerification.confirm 9.3.12.2

Sec-EncryptedDataDecryption.request 9.3.13.1

Sec-EncryptedDataDecryption.confirm 9.3.13.2

SSME SSME-CertificateInfo.request 9.4.1.1

SSME-CertificateInfo.confirm 9.4.1.2

SSME-AddTrustAnchor.request 9.4.2.1

SSME-AddTrustAnchor.confirm 9.4.2.2

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

109

SSME-AddCertificate.request 9.4.3.1

SSME-AddCertificate.confirm 9.4.3.2

SSME-VerifyCertificate.request 9.4.4.1

SSME-VerifyCertificate.confirm 9.4.4.2

SSME-DeleteCertificate.request 9.4.5.1

SSME-DeleteCertificate.confirm 9.4.5.2

SSME-AddHashIdBasedRevocation.request 9.4.6.1

SSME-AddHashIdBasedRevocation.confirm 9.4.6.2

SSME-AddIndividualLinkageBasedRevocation.request 9.4.7.1

SSME-AddIndividualLinkageBasedRevocation.confirm 9.4.7.2

SSME-AddGroupLinkageBasedRevocation.request 9.4.8.1

SSME-AddGroupLinkageBasedRevocation.confirm 9.4.8.2

SSME-AddRevocationInfo.request 9.4.9.1

SSME-AddRevocationInfo.confirm 9.4.9.2

SSME-RevocationInformationStatus.request 9.4.10.1

SSME-RevocationInformationStatus.confirm 9.4.10.2

SSME-P2pcdResponseGenerationService.request 9.4.11.1

SSME-P2pcdResponseGenerationService.confirm 9.4.11.2

SSME-P2pcdResponseGeneration.indication 9.4.12.1

SSME-P2pcdConfiguration.request 9.4.13.1

SSME-P2pcdConfiguration.confirm 9.4.13.2

SSME-Sec SSME-Sec-ReplayDetection.request 9.5.1.1

SSME-Sec-ReplayDetection.confirm 9.5.1.2

SSME-Sec-IncomingP2pcdInfo.request 9.5.2.1

SSME-Sec-IncomingP2pcdInfo.confirm 9.5.2.2

SSME-Sec-OutgoingP2pcdInfo.request 9.5.3.1

SSME-Sec-OutgoingP2pcdInfo.confirm 9.5.3.2

Parameters to primitives are denoted in italics and have names beginning with uppercase letters. Variables

used within primitives are denoted in italics and have names beginning with lowercase letters. Fields within

the data structures defined in Clause 6 are denoted in a fixed-width font.

Some primitives take parameters that are variable length strings. This standard adopts the convention that the

indicated data object provides both the length and the contents of the string. The length is denoted by String

Name.length. The contents are denoted by String Name.contents.

Some primitives take parameters that are keys for cryptographic operations (or that contain keys: for example,

a CMH in any state other than Initialized). This standard adopts the convention that the encoding of the key

includes an identification of the algorithm for which it is to be used. The algorithm is denoted by Key

Name.algorithm.

Some primitives take parameters that are arrays of variables. This standard adopts the convention that when

an array is passed as a parameter, the array object makes available the number of entries in the array. The

length is denoted by Array Name.length, and individual entries are denoted by Array Name[i]. The first

element in an array is element 0.

A primitive may take as a parameter an array of elements where each element is structured. In this case the

elements of entry i are denoted by Array Name[i].Element Name.

Where error indications or failure responses are considered critical to the operations, they are specified within

the “.confirm” primitives. Other error conditions not defined here may be indicated in such primitives.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

110

9.2 Identifiers used in the interface specification

9.2.1 SDEE identifier

Each locally distinct SDEE uses a distinct SDEE identifier, an integer, to identify itself to the SDS. This

standard does not specify how an implementation enforces that different SDEEs have different identifiers.

9.2.2 Cryptomaterial Handles

9.2.2.1 General

For purposes of primitives defined within this standard that use public-key cryptographic operations, the

model followed is that private keys and the associated public keys and certificates are stored by the SDS and

referenced by the SDEE using an integer known as a Cryptomaterial Handle (CMH). A CMH in this standard

is an abstract construct used to define the primitives. The interfaces defined in this standard assume that a

private key and a public key, or a private key and a certificate, referenced by a CMH form a valid pair. How

this is enforced in practice, how private key material is protected from being read and/or modified, how

secure random numbers are obtained to support key generation, how metadata associated with cryptomaterial

such as expiry time is managed, and how a CMH is deleted, is implementation specific. The CMH is an

abstraction of an actual cryptographic key storage interface and not intended to provide full key management

functionality. For such an interface implementers should consult an existing standard such as OASIS [B17].

An SDEE may have access to multiple CMHs at one time.

Figure 24 illustrates the CMH model.

SDS

SDEE

Sec-SAP

Private key and
public key Private key and

certificate Private key and
certificate

handle1 handle2 handle3

handle1 handle2 handle3

Figure 24 —SDEE and Cryptomaterial Handle

9.2.2.2 States

There are three states defined for a CMH, as follows:

 Initialized: A CMH in Initialized state does not reference any cryptomaterial.

 Key Pair Only: A CMH in Key Pair Only state references a private key and the corresponding public

key.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

111

 Key and Certificate: A CMH in Key and Certificate state references a private key and the

corresponding certificate.

Figure 25 shows the state diagram for Cryptomaterial Handles, including an indication of the primitives that

may be used to transition from one state to the next. A Cryptomaterial Handle in any state may be deleted by

invoking Sec-CryptomaterialHandle-Delete.request.

Initialized

Key pair only

Key and
certificate

Sec-CMH-GenerateKeyPair
Sec-CMH-StoreKeyPair

Sec-CMH-StoreCertificate

Sec-CMH-StoreCertificateAndKey

Sec-CMH-Delete

Sec-CryptoMaterialHandle

Sec-CMH-Delete

Sec-CMH-Delete

Figure 25 —State diagram for Cryptomaterial Handles

9.2.2.3 Initialization

A CMH is created in the Initialized state as shown in Figure 26 where the dashed lines indicate functionality

defined in this standard. Primitive names in the figure are abbreviated for compactness. The SDEE creates

the CMH via Sec-CryptomaterialHandle.request and the CMH is returned via Sec-

CryptomaterialHandle.confirm.

SDEE SDS

Sec-Cryptomaterial-
Handle.request

Sec-Cryptomaterial-
Handle.confirm

Figure 26 —Process flow for obtaining a new Cryptomaterial Handle

9.2.2.4 Transition to Key Pair Only state

On invocation of Sec-CryptomaterialHandle-StoreKeyPair.request referencing a CMH that is in the

Initialized state, the SDS stores the enclosed private key and place the CMH in the Key Pair Only state.

The SDS confirms the operation back to the invoking SDEE via Sec-CryptomaterialHandle-

StoreKeyPair.confirm. If the private and public keys referenced by the CMH do not form a valid key pair for

the given cryptographic algorithm, Sec-CryptomaterialHandle-StoreKeyPair.confirm returns an error. Key

pair validity is established for ECDSA and ECIES as specified in 5.3.7.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

112

The use of Sec-CryptomaterialHandle-StoreKeyPair.request is illustrated in Figure 27.

On invocation of Sec-CryptomaterialHandle-GenerateKeyPair.request for a CMH that is in the Initialized

state, the SDS generates a private key and public key pair, store them with the CMH and confirm the operation

back to the invoking SDEE in a Sec-CryptomaterialHandle-GenerateKeyPair.confirm, thus causing the CMH

to enter the Key Pair Only state. This is illustrated in Figure 28.

SDEE SDS

Sec-
CryptomaterialHandle-
StoreKeyPair.request

Sec-
CryptomaterialHandle-

StoreKeyPair.confirm

Obtain public

and private keys

Figure 27 —Transitioning a CMH from Initialized to Key Pair Only state
with externally generated keys

SDEE SDS

Sec-
CryptomaterialHandle-
GenerateKeyPair.request

Sec-
CryptomaterialHandle-

GenerateKeyPair.confirm

Figure 28 —Transitioning a CMH from Initialized to Key Pair Only state
with keys generated by the SDS

9.2.2.5 Transition to Key and Certificate state

On invocation of Sec-CryptomaterialHandle-StoreCertificateAndKey.request for a CMH that is in the

Initialized state, the SDS stores the enclosed private key and certificate and confirms the operation back to

the invoking SDEE via Sec-CryptomaterialHandle-StoreCertificateAndKey.confirm, thus causing the CMH

to enter the Key and Certificate state. This is illustrated in Figure 29.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

113

SDEE SDS

Sec-
CryptomaterialHandle-
StoreCertificateAndKey-
.request

Sec-
CryptomaterialHandle-

StoreCertificateAndKey-
.confirm

Obtain certificate

and key

Figure 29 —Transitioning a CMH directly from Initialized to Key and Certificate state

On invocation of a Sec-CryptomaterialHandle-StoreCertificate.request for a CMH that is in the Key Pair

Only state, the SDS stores the enclosed certificate with the CMH and confirm the operation back to the

invoking SDEE in a Sec-CryptomaterialHandle-StoreCertificate.confirm, thus causing the CMH to enter the

Key and Certificate state. This is illustrated in Figure 30.

SDEE SDS

Sec-
CryptomaterialHandle-
StoreCertificate.request

Sec-
CryptomaterialHandle-

StoreCertificate.confirm

Obtain certificate

for public key
Sec-
CryptomaterialHandle-
StoreKeyPair.request

Sec-
CryptomaterialHandle-
StoreKeyPair.confirm

Figure 30 —Transitioning a CMH from Initialized to Key and Certificate state
via Key Pair Only state with externally generated keys

If the private key and the public key indicated by the certificate do not form a valid key pair for the given

cryptographic algorithm, or if the certificate is not part of a valid certificate chain beginning with a trust

anchor, then Sec-CryptomaterialHandle-StoreCertificate.confirm returns an error and the CMH state is

undefined. Key pair validity for ECDSA and ECIES is defined in 5.3.7 (for explicit certificates) or 5.3.2 (for

implicit certificates). The validity of the certificate chain is determined according to the criteria given in

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

114

5.1.2. This may also be assured using the processing specified for Sec-CryptomaterialHandle-Store-

Certificate.request and Sec-CryptomaterialHandle-StoreCertificateAndKey.request.

NOTE—This standard does not provide a primitive that allows a private key to be imported to a CMH in encrypted form,

but implementations may provide such an interface.

9.2.2.6 Deletion

A CMH is deleted via Sec-CryptomaterialHandle-Delete.request. The deletion is confirmed via Sec-

CryptomaterialHandle-Delete.confirm. This is illustrated in Figure 31.

SDEE SDS

Sec-
CryptomaterialHandle-
Delete.req

Sec-
CryptomaterialHandle-

Delete.cfm

Figure 31 —Process flow for deleting a Cryptomaterial Handle

9.2.3 Symmetric Cryptomaterial Handles

9.2.3.1 General

For purposes of primitives defined within this standard that use symmetric cryptographic operations, the

model followed is that keys are stored by the SDS and referenced by the SDEE using an integer known as a

Symmetric Cryptomaterial Handle (SCMH). A SCMH in this standard is an abstract construct used to define

the primitives. How key material is protected from being read and/or modified, how secure random numbers

are obtained to support key generation, how metadata associated with cryptomaterial such as expiry time is

managed, and how a SCMH is deleted, is implementation specific. The SCMH is an abstraction of an actual

cryptographic key storage interface and not intended to provide full key management functionality. For such

an interface implementers should consult an existing standard such as OASIS [B17].

An SDEE may have access to multiple SCMHs at one time.

9.2.3.2 State

There is a single state defined for a SCMH, as follows:

 Initialized: A CMH in Initialized state references a symmetric key.

Figure 32 shows the state diagram for Cryptomaterial Handles, including an indication of the primitives that

may be used to transition from one state to the next.

The SCMH is deleted via Sec-SymmetricCryptomaterialHandle-Delete.request.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

115

Initialized

Sec-SymmetricCryptoMaterialHandle

Sec-SymmetricCryptoMaterialHandle-Delete

Figure 32 —State diagram for Symmetric Cryptomaterial Handles

9.2.3.3 Initialization

A SCMH is created in the Initialized state as shown in Figure 33 where the dashed lines indicate functionality

defined in this standard. Primitive names in the figure are abbreviated for compactness. The SDEE creates

the SCMH via Sec-SymmetricCryptomaterialHandle.request and the CMH is returned via Sec-

SymmetricCryptomaterialHandle.confirm. The SDEE provides the key material in the request primitive.

Certain operations by the SDS can also result in the creation of a SCMH which is returned to the invoking

entity; those operations are noted in Clause 9.

SDEE SDS

Sec-Symmetric-
CryptomaterialHandle-
.request

Sec-Symmetric-
CryptomaterialHandle-

.confirm

Figure 33 —Process flow for obtaining a new Symmetric Cryptomaterial Handle

9.3 Sec SAP

9.3.1 Sec-CryptomaterialHandle

9.3.1.1 Sec-CryptomaterialHandle.request

9.3.1.1.1 Function

The primitive is used by a SDEE to request a CMH.

9.3.1.1.2 Semantics of the service primitive

The primitive does not take parameters.

9.3.1.1.3 When generated

The primitive is generated as needed by SDEEs.

9.3.1.1.4 Effect of receipt

On receipt of this primitive the SDS generates a CMH value that it has not previously returned. The SDS

returns the new CMH via the corresponding confirm primitive.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

116

9.3.1.2 Sec-CryptomaterialHandle.confirm

9.3.1.2.1 Function

The primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.3.1.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-CryptomaterialHandle.confirm (

Result Code

Cryptomaterial Handle,

)

Name Type Valid range Description

Result Code Enumerated Success,

Failure

The result of the operation

Cryptomaterial Handle Integer Any A CMH as specified in 9.2.2

9.3.1.2.3 When generated

The primitive is generated in response to Sec-CryptomaterialHandle.request.

9.3.1.2.4 Effect of receipt

No behavior is specified.

9.3.2 Sec-CryptomaterialHandle-GenerateKeyPair

9.3.2.1 Sec-CryptomaterialHandle-GenerateKeyPair.request

9.3.2.1.1 Function

The primitive is used by a SDEE to request a key pair from the SDS for use with an associated CMH.

9.3.2.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-CryptomaterialHandle-GenerateKeyPair.request (

Cryptomaterial Handle,

Algorithm

)

Name Type Valid range Description

Cryptomaterial

Handle

Integer Any A CMH in Initialized state

Algorithm Enumerated

type

ecdsaBrainpoolP256r1WithSha256,

ecdsaBrainpoolP384r1WithSha384,

ecdsaNistP256WithSha256,

eciesNistp256,

eciesBrainpoolP256r1

The algorithm identifier for the key

pair to be generated

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

117

9.3.2.1.3 When generated

The primitive is generated as needed by SDEEs.

9.3.2.1.4 Effect of receipt

On receipt of this primitive the SDS generates a key pair for the given algorithm. The key pair is stored at

the CMH provided and the CMH is transitioned to the Key Pair Only state. The public key is returned in the

corresponding confirm primitive.

9.3.2.2 Sec-CryptomaterialHandle-GenerateKeyPair.confirm

9.3.2.2.1 Function

The primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.3.2.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-CryptomaterialHandle-GenerateKeyPair.confirm (

Result Code

Public Key,

)

Name Type Valid range Description

Result

Code

Enumerated Success, Failure The result of the request

Public

Key

A public

key

Any public key that is valid for the

algorithm provided to the corresponding

request primitive

The public key from the key pair that was

generated in response to the corresponding

request primitive

9.3.2.2.3 When generated

The primitive is generated in response to Sec-CryptomaterialHandle-GenerateKeyPair.request.

9.3.2.2.4 Effect of receipt

No behavior is specified.

9.3.3 Sec-CryptomaterialHandle-StoreKeyPair

9.3.3.1 Sec-CryptomaterialHandle-StoreKeyPair.request

9.3.3.1.1 Function

The primitive is used by a SDEE to request that the SDS stores a key pair generated elsewhere for use with

an associated CMH.

9.3.3.1.2 Semantics of the service primitive

The parameters of this primitive are as follows:

Sec-CryptomaterialHandle-StoreKeyPair.request (

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

118

Cryptomaterial Handle,

Algorithm,

Public Key,

Private Key

)

Name Type Valid range Description

Cryptomaterial

Handle

Integer Any A CMH as specified in 9.2.2 in

Initialized state

Algorithm Enumerated

type

ecdsaBrainpoolP256r1WithSha256,

ecdsaBrainpoolP384r1WithSha384,

ecdsaNistP256WithSha256,

eciesNistp256,

eciesBrainpoolP256r1

The algorithm identifier for the key

pair to be stored

Public Key Public key Any public key valid for Algorithm The public key to be stored

Private Key Private key Any private key valid for

Algorithm

The private key to be stored

9.3.3.1.3 When generated

The primitive is generated as needed by SDEEs.

9.3.3.1.4 Effect of receipt

On receipt of this primitive the SDS verifies that the public key and private key form a valid key pair as

defined in 5.3.7. If the key pair is valid, it is stored at the CMH provided and the CMH is transitioned to the

Key Pair Only state. The public key is returned in the corresponding confirm primitive.

9.3.3.2 Sec-CryptomaterialHandle-StoreKeyPair.confirm

9.3.3.2.1 Function

The primitive returns the result of the corresponding request primitive.

9.3.3.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-CryptomaterialHandle-StoreKeyPair.confirm (

Result Code

)

Name Type Valid range Description

Result Code Enumerated Success,

Invalid key pair

The result of the operation

9.3.3.2.3 When generated

The primitive is generated in response to Sec-CryptomaterialHandle-StoreKeyPair.request. Result Code is

“success” if the parameters Public Key and Private Key passed in the request primitive form a valid key pair,

and “invalid key pair” if they do not.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

119

9.3.3.2.4 Effect of receipt

No behavior is specified.

9.3.4 Sec-CryptomaterialHandle-StoreCertificate

9.3.4.1 Sec-CryptomaterialHandle-StoreCertificate.request

9.3.4.1.1 Function

The primitive is used by a SDEE to request that the SDS stores a certificate at a specific CMH.

9.3.4.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-CryptomaterialHandle-StoreCertificate.request (

Cryptomaterial Handle,

Certificate,

Private Key Transformation

)

Name Type Valid range Description

Cryptomaterial

Handle

Integer Any A CMH as specified in 9.2.2 in Key Pair

Only state.

Certificate 1609.2 certificate Any 1609.2 certificate

containing a public

verification key for the

algorithm associated with

Cryptomaterial Handle

The certificate to be stored.

Private Key

Transformation

A description of a

linear

transformation,

y = Ax + B

Any A transformation to be applied to the private

key to determine whether it corresponds to

the public key specified by the certificate.

For implicit certificates, A is equal to the

hash of the certificate as specified in 5.3.2

and B is the private key contribution data

referred to as r in SEC 4, section 2.3.

9.3.4.1.3 When generated

The primitive is generated as needed by SDEEs.

9.3.4.1.4 Effect of receipt

On receipt of this primitive the SDS verifies that the following are true:

a) The private key indicated by Cryptomaterial Handle, following the application of Private Key

Transformation, and the public verification key indicated by Certificate, form a valid key pair as

defined in 5.3.7 (for explicit certificates) or 5.3.2 (for implicit certificates).

b) The certificate provided at Certificate is valid (for example by invoking SSME-

VerifyCertificate.request).

If both statements are true, the SDS stores the updated private key and the certificate associated with the

handle and the CMH is transitioned to the Key and Certificate state. If not, the certificate is not stored and

the private key is unchanged.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

120

9.3.4.2 Sec-CryptomaterialHandle-StoreCertificate.confirm

9.3.4.3 Function

The primitive returns the result of the corresponding request primitive.

9.3.4.3.1 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-CryptomaterialHandle-StoreCertificate.confirm (

Result Code

)

Name Type Valid range Description

Result Code Enumerated Success

Keys do not match

Any Result Code value returned by SSME-

VerifyCertificate.request

The result of the operation

9.3.4.3.2 When generated

The primitive is generated in response to Sec-CryptomaterialHandle-StoreCertificate.request.

9.3.4.3.3 Effect of receipt

No behavior is specified.

9.3.5 Sec-StoreCertificateAndKey

9.3.5.1 Sec-CryptomaterialHandle-StoreCertificateAndKey.request

9.3.5.1.1 Function

The primitive is used by a SDEE to request that the SDS stores a certificate at a specific CMH.

9.3.5.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-CryptomaterialHandle-StoreCertificateAndKey.request (

Cryptomaterial Handle,

Certificate,

Private Key

)

Name Type Valid range Description

Cryptomaterial

Handle

Integer Any A CMH as specified in

9.2.2 in Initialized state

Certificate 1609.2

certificate

Any 1609.2 certificate containing a public

verification key for the algorithm associated with

Cryptomaterial Handle

The certificate to be

stored

Private Key A private

key

Any suitable for the algorithm defined in the

certificate

The private key to be

stored

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

121

9.3.5.1.3 When generated

The primitive is generated as needed by SDEEs.

9.3.5.1.4 Effect of receipt

On receipt of this primitive the SDS verifies that the following are true:

a) Private Key and the public key indicated by Certificate form a valid key pair as defined in 5.3.7 (for

explicit certificates) or 5.3.2 (for implicit certificates).

b) The certificate provided at Certificate is valid (for example by invoking SSME-

VerifyCertificate.request).

If both statements are true, the SDS stores the updated private key and the certificate associated with the

handle and the CMH is transitioned to the Key and Certificate state. If not, the certificate is not stored and

the private key is unchanged.

9.3.5.2 Sec-CryptomaterialHandle-StoreCertificateAndKey.confirm

9.3.5.2.1 Function

The primitive returns the result of the corresponding request primitive.

9.3.5.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-CryptomaterialHandle-StoreCertificate.confirm (

Result Code

)

Name Type Valid range Description

Result

Code

Enumerated Success

Keys do not match

Any Result Code value returned by SSME-

VerifyCertificate.request

The result of the operation

9.3.5.2.3 When generated

The primitive is generated in response to Sec-CryptomaterialHandle-StoreCertificate.request.

9.3.5.2.4 Effect of receipt

No behavior is specified.

9.3.6 Sec-CryptomaterialHandle-Delete

9.3.6.1 Sec-CryptomaterialHandle-Delete.request

9.3.6.1.1 Function

The primitive is used by a SDEE to request deletion of a CMH and the associated cryptographic material.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

122

9.3.6.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-CryptomaterialHandle-Delete.request (

Cryptomaterial Handle,

)

Name Type Valid range Description

Cryptomaterial

Handle

Integer Any A CMH as specified in 9.2.2 in any state

9.3.6.1.3 When generated

The primitive is generated as needed by SDEEs.

9.3.6.1.4 Effect of receipt

On receipt of this primitive the SDS deletes the linkage between the CMH and any cryptomaterial that it

references. The SDS may also delete the cryptomaterial itself.

9.3.6.2 Sec-CryptomaterialHandle-Delete.confirm

9.3.6.2.1 Function

The primitive confirms the operation of the Sec-CryptomaterialHandle-Delete.request primitive.

9.3.6.2.2 Semantics of the service primitive

The primitive does not take parameters.

9.3.6.2.3 When generated

The primitive is generated in response to Sec-CryptomaterialHandle-Delete.request.

9.3.6.2.4 Effect of receipt

No behavior is specified.

9.3.7 Sec-SymmetricCryptomaterialHandle

9.3.7.1 Sec-SymmetricCryptomaterialHandle.request

9.3.7.1.1 Function

The primitive is used by a SDEE to request a Symmetric Cryptomaterial Handle (SCMH) for symmetric

keying material.

9.3.7.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-SymmetricCryptomaterialHandle.request (

Algorithm,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

123

Generate,

Key Bytes (optional)

)

Name Type Valid range Description

Algorithm Enumerated aes128Ccm An identifier of the algorithm for the

symmetric key as specified in 6.3.19.

Generate Boolean True, False Indicates whether the SDS is being asked to

generate the key (True) or the key material is

being passed (False).

Key Bytes Octet string An octet string of the

length appropriate for the

algorithm indicated in

Algorithm; for AES-CCM,

16 bytes

The keying material to be used. Provided if

Generate is False.

9.3.7.1.3 When generated

The primitive is generated as needed by SDEEs.

9.3.7.1.4 Effect of receipt

On receipt of this primitive the SDS generates a SCMH value that it has not previously returned. If Generate

is true, the SDS generates the symmetric key material and store it at SCMH. If Generate is false, the SDS

stores the key bytes provided via Key Bytes as the key material at SCMH. The SDS returns the new CMH

via the corresponding confirm primitive.

9.3.7.2 Sec-SymmetricCryptomaterialHandle.confirm

9.3.7.2.1 Function

The primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.3.7.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-CryptomaterialHandle.confirm (

Result Code,

Symmetric Cryptomaterial Handle,

)

Name Type Valid range Description

Result Code Enumerated Success

Bad parameters

Failure

The result of the operation

Symmetric Cryptomaterial

Handle

Integer Any A CMH as specified in 9.2.3

9.3.7.2.3 When generated

The primitive is generated in response to Sec-CryptomaterialHandle.request.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

124

9.3.7.2.4 Effect of receipt

No behavior is specified.

9.3.8 Sec-SymmetricCryptomaterialHandle-HashedId8

9.3.8.1 Sec-SymmetricCryptomaterialHandle-HashedId8.request

9.3.8.1.1 Function

The primitive is used by a SDEE to request the HashedId8 of the key referenced by a Symmetric

Cryptomaterial Handle (SCMH), for example to include it in a PreSharedKeyRecipientInfo.

9.3.8.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-SymmetricCryptomaterialHandle-HashedId8.request (

Symmetric Cryptomaterial Handle

)

Name Type Valid range Description

Symmetric

Cryptomaterial

Handle

Integer Integer referencing a Symmetric

Cryptomaterial Handle

9.3.8.1.3 When generated

The primitive is generated as needed by SDEEs.

9.3.8.1.4 Effect of receipt

On receipt of this primitive the SDS generates the HashedId8 of the symmetric key referenced by Symmetric

Cryptomaterial Handle and returns it via the corresponding return primitive.

9.3.8.2 Sec-SymmetricCryptomaterialHandle-HashedId8.confirm

9.3.8.2.1 Function

The primitive returns the value calculated in the processing specified for the corresponding request primitive.

9.3.8.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-SymmetricCryptomaterialHandle-HashedId8.confirm (

HashedId8

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

125

Name Type Valid range Description

HashedId8 HashedId8 Any The HashedId8 of the key referenced by

the Symmetric Cryptomaterial Handle

provided to the corresponding request

primitive

9.3.8.2.3 When generated

The primitive is generated in response to Sec-SymmetricCryptomaterialHandle-HashedId8.request.

9.3.8.2.4 Effect of receipt

No behavior is specified.

9.3.8.3 Sec-SymmetricCryptomaterialHandle-Delete.request

9.3.8.3.1 Function

The primitive is used by a SDEE to request deletion of a Symmetric Cryptomaterial Handle (SCMH) and the

associated cryptographic material.

9.3.8.3.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-SymmetricCryptomaterialHandle-Delete.request (

Symmetric Cryptomaterial Handle,

)

Name Type Valid range Description

Symmetric Cryptomaterial Handle Integer Any A CMH as specified in 9.2.3 in any state

9.3.8.3.3 When generated

The primitive is generated as needed by SDEEs.

9.3.8.3.4 Effect of receipt

On receipt of this primitive the SDS deletes the linkage between the CMH and any cryptomaterial that it

references. The SDS may also delete the cryptomaterial itself.

9.3.8.4 Sec-SymmetricCryptomaterialHandle-Delete.confirm

9.3.8.5 Function

The primitive confirms the operation of the Sec-SymmetricCryptomaterialHandle-Delete.request primitive.

9.3.8.5.1 Semantics of the service primitive

The primitive does not take parameters.

9.3.8.5.2 When generated

The primitive is generated in response to Sec-SymmetricCryptomaterialHandle-Delete.request.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

126

9.3.8.5.3 Effect of receipt

No behavior is specified.

9.3.9 Sec-SignedData

9.3.9.1 Sec-SignedData.request

9.3.9.1.1 Function

The primitive is used by a SDEE to request that the SDS signs data.

9.3.9.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-SignedData.request (

 Cryptomaterial Handle,

Data (optional),

Data Type (optional),

External Data Hash (optional),

External Data Hash Algorithm (optional),

PSID,

Set Generation Time,

Set Generation Location,

Expiry Time (optional),

Signer Identifier Type,

Signer Identifier Certificate Chain Length (optional),

Sign With Fast Verification,

EC Point Format,

Use Peer-to-Peer Cert Distribution,

SDEE ID (optional)

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

127

Name Type Valid range Description

Cryptomaterial

Handle

Integer Any integer A CMH as specified in 9.2.2 in the Key and

Certificate state, where the permissions of the

certificate referenced by the CMH allow that

certificate to generate a signature on the provided

data.

Data Octet string Any Used to fill in the data field of the SignedData-

Payload.

Data Type Enumerated Ieee1609Dot2Data

Raw

Present if and only if Data is present. Set to Raw if

the contents of Data are to be encapsulated in an Ieee-

1609Dot2Data. Set to Ieee1609Dot2Data if the

contents of Data are an already-encoded Ieee1609-

Dot2Data.

External Data Hash Octet string Length 32 Used to fill in the extDataHash field of the Signed-

DataPayload of ToBeSignedData payload.

External Data Hash

Algorithm

Enumerated sha256 If External Data Hash is non-empty then this field

indicates the hash algorithm used to generate External

Data Hash as specified in 5.3.1.

PSID Integer 0…(232 − 1) Used to fill in the psid field of the ToBeSignedData.

Set Generation Time Boolean True

False

If True, the resulting ToBeSignedData contains

the generationTime field.

Set Generation

Location

Boolean True

False

If True, the resulting ToBeSignedData contains

the generationLocation field.

Expiry Time Time Any time. If

Generation Time is

included, is later

than or equal to

GenerationTime.

If provided, the resulting ToBeSignedData

contains the expiryTime field.

Signer Identifier Type Enumerated Certificate,

digest, self

Sets the type of the SignerIdentifier within the

SignedData.

Signer Identifier

Certificate Chain

Length

Integer or

“Max”

1…256

−256…−1

“Max”

If Signer Identifier Type is “certificate”, sets the

length of the certificate chain. If positive, includes that

number of certificates from the chain. If negative with

value –n, omits the top n certificates, starting with the

root CA certificate, and includes the rest of the chain.

If “Max”, includes the entire certificate chain back to

the root certificate.

Ignored if Signer Identifier Type is not “certificate”.

Sign With Fast

Verification

Enumerated Yes—uncompressed

Yes—compressed

No

If this is “Yes—uncompressed” or “Yes—

compressed”, the confirm primitive returns data to

enable fast verification. If this is “No”, the confirm

primitive does not return this data, i.e., the type of

rSig is set to x-only.

EC Point Format Enumerated Uncompressed

Compressed

States whether elliptic curve points (public keys in

explicit certificates and reconstruction values in

implicit certificates) should be represented in

compressed or uncompressed form as specified in

EccP256CurvePoint, EccP384CurvePoint.

Use Peer-to-Peer Cert

Distribution

Boolean True

False

Whether or not to use peer-to-peer certificate

distribution as specified in Clause 8. Specifically,

whether or invoke SSME-Sec-OutgoingP2pcd-

Info.request within this primitive

SDEE ID Integer Provided if Use Peer-to-Peer Cert Distribution is true

for use by SSME-Sec-OutgoingP2pcdInfo.request.

9.3.9.1.3 When generated

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

128

The primitive is generated by a SDEE to request that the SDS signs data.

9.3.9.1.4 Effect of receipt

On receipt of this primitive the SDS generates, if possible, a valid encoded Ieee1609Dot2Data of type Signed-

Data containing the indicated payload.

If the parameter Data was provided and Data Type was Ieee1609Dot2Data, the result of the operation is an

Ieee1609Dot2Data, whose content field contains a SignedData, in which tbsData.payload.data is equal to

the parameter Data.

If the parameter Data was provided and Data Type was Raw, the result of the operation is an

Ieee1609Dot2Data, whose content field contains a SignedData, in which tbsData.payload.data is in turn

an Ieee1609Dot2Data whose content field contains unsecuredData which is the COER encoding of

an octet string containing Data.

If the parameter Use Peer-to-Peer Cert Distribution is True, the SDS invokes

SSME-Sec-OutgoingP2pcdInfo.request with parameters set as follows:

 SDEE ID: The SDEE ID parameter provided to Sec-SignedData.request.

 Certificate: The certificate indicated by the parameter Cryptomaterial Handle provided to Sec-

SignedData.request.

If the corresponding SSME-Sec-OutgoingP2pcdInfo.confirm returns a p2pcdLearningRequest parameter, the

SDS include that parameter in the HeaderInfo of the SignedData.

The result of the operation (the valid output on success, or an error code on failure) is returned via Sec-

SignedData.confirm.

9.3.9.2 Sec-SignedData.confirm

9.3.9.2.1 Function

The primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.3.9.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-SignedData.confirm (

Result Code,

Signed Data (optional),

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

129

Name Type Valid range Description

Result Code Enumerated Success

Incorrect input

No certificate provided

No public key provided

Not enough information to construct chain

No trust anchor

Chain too long for implementation

Not cryptographically valid

Unknown cryptographic validity

Inconsistent permissions in chain

Revoked

Dubious

Unsupported critical information fields

Invalid encoding

Current time before certificate validity period

Current time after cerificate validity period

Expiry time before certificate validity period

Expiry time after certificate validity period

Invalid generation location

Inconsistent permissions in certificate

Incorrect requested certificate chain length

for security profile

Incorrect requested certificate chain length

for implementation

The result of the signing

operation as specified in

5.3.1

Signed Data Octet string An Ieee1609Dot2Data of type signedData The SignedData, if it was

created

9.3.9.2.3 When generated

The primitive is generated in response to Sec-SignedData.request. The parameters are set as follows. In the

description below, “the input XXX” is shorthand for “the parameter XXX provided to the corresponding

invocation of Sec-SignedData.request”.

a) Signed Data:

1) If the signing operation resulting from the Sec-SignedData.request succeeded, the Signed Data

parameter contains the encoded signed data. This is an Ieee1609Dot2Data with:

i) content indicating type signedData.

ii) content.signedData.tbsData.payload.data containing:

i) If the input Data Type was Ieee1609Dot2Data, the input Data exactly as provided.

ii) If the input Data Type was Raw, an Ieee1609Dot2Data wth content indicating

type unsecured and content.unsecuredData containing the input Data.

iii) A SignerIdentifier field containing the certificate or public key from the input CMH, with

the signer identifier type and certificate chain (if appropriate) as indicated by Sec-Signed-

Data.request.

iv) All other the fields set as indicated by Sec-SignedData.request.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

130

2) If the signing operation resulting from from the Sec-SignedData.request did not succeed, not

present.

b) Result Code:

1) Result Code is set as follows if only one error occurred when signing:

i) “Incorrect input” if neither the input Data nor the input extDataHash was provided.

ii) “No certificate provided” if Signer Identifier Type provided to Sec-SignedData.request

was anything other than self and the CMH provided was not in Certificate and Key state.

iii) “No public key provided” if Signer Identifier Type provided to Sec-SignedData.request

was self and the CMH provided was not in Key Pair Only state.

iv) “Not enough information to construct chain” if the SDS could not construct a chain to a

trust anchor.

v) “No trust anchor” if the chain from the certificate does not end at a known trust anchor

(see 5.1.2.1).

vi) “Chain too long for implementation” if the chain is longer than the implementation

supports (see 5.1.2.3).

vii) “Not cryptographically valid” if any certificate in the chain fails to verify

cryptographically (see 5.1.2.3).

viii) “Unknown cryptographic validity” if any certificate in the chain certificate has not been

verified.

ix) “Inconsistent permissions in chain” if the permissions in the chain are inconsistent (see

5.1.2.4).

x) “Revoked” if any certificate in the chain has been revoked (see 5.1.3).

xi) “Dubious” if the revocation information relevant to any certificate in the chain is overdue

(see 5.1.3.6).

xii) “Unsupported critical information fields” if the certificate or a certificate in its chain

contains an unsupported critical information field (see 5.2.5).

xiii) “Invalid encoding” if the certificate or a certificate in its chain is not a valid encoding of

the data structures in Clause 6.

xiv) “Current time before certificate validity period” if the time at which signing was

requested is before the certificate’s start time.

xv) “Current time after certificate validity period” if the time at which signing was requested

is after the certificate’s expiry time.

xvi) “Expiry time before certificate validity period” if Expiry Time is before the certificate’s

start time.

xvii) “Expiry time after certificate validity period” if Expiry Time is after the certificate’s

expiry time.

xviii) “Invalid generation location” if the region field was present in the signing

ToBeSignedCertificate and the current location is outside that region.

xix) “Inconsistent permissions in certificate” if Cryptomaterial Handle does not contain a

(PSID, SSP) pair equal to (PSID, Service Specific Permissions).

xx) “Incorrect requested certificate chain length for security profile” if the length of the

certificate chain from the signing certificate to the root is greater than Maximum Full

Certificate Chain Length.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

131

xxi) “Incorrect requested certificate chain length for implementation” if the length of the

certificate chain from the signing certificate to the root is greater than the maximum length

supported by the implementation.

2) If the signing operation fails for more than one of the reasons above, Result Code takes a value

indicating one of the reasons.

3) Result Code is set to “success” if none of the abovementioned conditions hold.

9.3.9.2.4 Effect of receipt

No behavior is specified.

9.3.10 Sec-EncryptedData

9.3.10.1 Sec-EncryptedData.request

9.3.10.1.1 Function

The primitive is used by a SDEE to request that the SDS encrypts data.

9.3.10.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-EncryptedData.request (

Data,

Data Type,

Data Encryption Key Type,

Symmetric CMHs (optional),

Recipient Certificates (optional),

Signed Data Recipient Info (optional),

Response Encryption Key (optional),

EC Point Format

)

If none of the parameters Recipient Certificates, Symmetric CMHs, Signed Data Recipient Info, Response

Encryption Key are provided, the corresponding confirm primitive returns an error.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

132

Name Type Valid range Description

Data Octet string An octet string

Ieee1609Dot2Data

The data to be encrypted

Data Type Enumerated Ieee1609Dot2Data

Raw

Set to “Raw” if the contents of Data are an octet

string, not wrapped in an Ieee1609Dot2Data. Set

to “Ieee1609Dot2Data” if the contents of Data

are an already-encoded Ieee1609Dot2Data.

Data

Encryption

Key Type

Enumerated “static”

“ephemeral”

Whether the data is to be encrypted with a static

data encryption key as in 5.3.4.2, or an

ephemeral data encryption key as in 5.3.4.1.

Symmetric

CMH

Array of

Symmetric

Cryptomaterial

Handles

 A Symmetric CMH as specified in 9.2.3. If Data

Encryption Key Type is “static”, this parameter

is present and has a single entry. Otherwise, this

may or may not be present.

Recipient

Certificates

Array of

certificates

Any array of valid

certificates which

contain encryption keys

One certificate for each recipient. Not present if

Data Encryption Key Type is “static”. Optionally

present if Data Encryption Key Type is

“ephemeral”.

Signed Data

Recipient

Info

Tuple of (public

key, 32-byte octet

string)

The public key is for an

encryption algorithm

The 32-byte octet string is the hash of the signed

data from which the public key was obtained as

specified in 6.3.33. Not present if Data

Encryption Key Type is “static”. Optionally

present if Data Encryption Key Type is

“ephemeral”.

Response

Encryption

Key

Public key HashedId8 of the

response encryption key

Public key is for an encryption algorithm. Not

present if Data Encryption Key Type is “static”.

Optionally present if Data Encryption Key Type

is “ephemeral”.

EC Point

Format

Enumerated Compressed

Uncompressed

The format of the elliptic curve points included

in the RecipientInfos

9.3.10.1.3 When generated

The primitive is generated by a SDEE to request that the SDS encrypts data.

9.3.10.1.4 Effect of receipt

On receipt of this primitive the SDS attempts to encrypt the data for the specified recipients as specified in

5.3.4. If Data Type is raw, the SDS first encapsulates Data in an Ieee1609Dot2Data by setting it as the

payload of an Ieee1609Dot2Data of type unsecuredData.

9.3.10.2 Sec-EncryptedData.confirm

9.3.10.2.1 Function

This primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.3.10.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-EncryptedData.confirm (

Result Code,

Encrypted Data (optional),

Failed Certificates (optional)

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

133

Name Type Valid range Description

Result Code Enumerated Success

Incorrect inputs

Fail on some certificates

Fail on all certificates

The result of the encryption operation

as specified in 5.3.4

Encrypted

Data

Octet string An Ieee1609Dot2Data of type
encryptedData

The encrypted data, if it was created

Failed

Certificates

Certificate

array

Any Any certificates on which encryption

failed

9.3.10.2.3 When generated

The primitive is generated in response to Sec-EncryptedData.request. The parameters are set as follows. In

the description below, “the input XXX” is shorthand for “the parameter XXX provided to the corresponding

invocation of Sec-EncryptedData.request”.

a) Result Code is set as follows:

1) Result Code is set to “fail on some certificates” if any of the following hold:

i) At least one of the certificates passed to Sec-EncryptedData.request is not known to the

SSME, i.e., a query of SSME-CertificateInfo.request results in a Result Code from SSME-

CertificateInfo.confirm other than “found”.

ii) At least one of the certificates passed to Sec-EncryptedData.request does not contain an

encryption key.

iii) The public key algorithm for the encryption key in at least one of the certificates is not a

known value.

iv) The symmetric encryption algorithm associated with the encryption key in at least one of

the certificates is not supported by this implementation.

2) Result Code is set to “fail on all certificates” if none of the certificates could be encrypted to

for one of the reasons above.

3) Result Code is set to “incorrect inputs” if none of the parameters Recipient Certificates,

Symmetric CMH, Signed Data Recipient Info, Response Encryption Key were provided to the

corresponding request primitive.

4) Result code is set to “success” if all of the recipients could be encrypted to.

b) Failed Certificates is empty if Result Code is “success”, and otherwise contains an array of the

certificates for which encryption failed.

c) Encrypted Data is empty if Result Code is “fail on all certificates”, and otherwise contains the

encoded encrypted data as specified in 5.3.4.

1) If the input Data Type was Ieee1609Dot2Data, the plaintext P is the input Data exactly as

provided.

2) If the input Data Type was Raw, the plaintext P is an Ieee1609Dot2Data wth content

indicating type unsecured and content.unsecuredData containing the input Data.

9.3.10.2.4 Effect of receipt

No behavior is specified.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

134

9.3.11 Sec-SecureDataPreprocessing

9.3.11.1 Sec-SecureDataPreprocessing.request

9.3.11.1.1 Function

The primitive is used by a SDEE to request that the SDS performs the preprocessing on secure data.

9.3.11.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-SecureDataPreprocessing.request(

Data,

SDEE ID (optional),

PSID,

Use P2PCD

)

Name Type Valid range Description

Data Octet string An Ieee1609-

Dot2Data

The data to be processed

SDEE ID SDEE ID The SDEE ID of the invoking SDEE

PSID PSID The PSID derived from context (see

5.2.3.3.2)

Use P2PCD Boolean True

False

Whether or not this should initiate a

P2PCD learning request process.

9.3.11.1.3 When generated

The primitive is generated by a SDEE to request that the SDS performs preprocessing on an Ieee1609-

Dot2Data.

9.3.11.1.4 Effect of receipt

On receipt of this primitive, the SDS takes the following actions:

a) Determine the type of the input Ieee1609Dot2Data.

b) If the input is of type signedData:

1) Determine the SSP associated with the input PSID in the signer’s certificate, if it is available.

2) If Use P2PCD is True, invoke SSME-Sec-IncomingP2pcdInfo.request with parameters equal

to the input SDEE ID and the certificate and P2PCD request from the SignedData, if any. No

action is specified to be taken based on the parameters of the corresponding SSME-Sec-

IncomingP2pcdInfo.confirm.

3) If the SignerIdentifier is of type certificate, add the certificate(s) to the SSME by

invoking SSME-AddCertificate.request.

NOTE—Previous versions of this standard had an equivalent to this function returning various fields from the Ieee1609-

Dot2Data. In this version of the standard the specification assumes that the SDEE can parse an Ieee1609Dot2Data and

all that needs to be specified are actions that the SDEE cannot carry out by itself.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

135

9.3.11.2 Sec-SecureDataPreprocessing.confirm

9.3.11.2.1 Function

The primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.3.11.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-SecureDataPreprocessing.confirm(

Result Code,

Content Type (optional),

Service Specific Permissions (optional),

Geographic Region (optional),

Assurance Level (optional),

Earliest Next CRL Time

)

Name Type Valid range Description When included

Result Code Enumerated Success

Invalid input

Unknown certificate

Inconsistent PSID

The result of the data

extraction operation.

Content Type Enumerated Unsecured

Encrypted

Signed

The type of the Ieee1609-

Dot2Data passed in the

request.

Included if Result Code is

“success”.

Service

Specific

Permissions

A SSP of a

type specified

in 6.4.29

A valid SSP

according to its type

(Octet string or

BitmapSsp)

The SSP from the

certificate that validates

the signed data.

Included if Result Code is

“success” and the

certificate included a SSP

with the indicated PSID.

Geographic

Region

Geographic

Region

An indicator of a

geographic region,

or “any”

An indicator of a

geographic validity

region

Included if Result Code is

“success”.

Assurance

Level

Subject

Assurance as

specified in

6.4.27

 The assurance level from

the certificate that

validates the signed data.

Included if Result Code is

“success” and the

certificate included an

assurance level.

Earliest Next

CRL Time

Time Any valid time The earliest nextCrl time

value for any certificate

in the chain for a signed

SPDU.

Included if Data was of

type signed and Result

Code is “success”.

9.3.11.2.3 When generated

The primitive is generated in response to Sec-SecureDataPreprocessing.request. The parameters are set as

follows. In the description below, “the input XXX” is shorthand for “the parameter XXX provided to the

corresponding invocation of Sec-SecureDataPreprocessing.request”.

a) Result Code is set as follows:

1) “Invalid input” if the input Data couldn’t be parsed.

2) “Unknown certificate” if the following all hold:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

136

i) The input Data was of type Signed.

ii) The SignerIdentifier in the SignedData of the input Data was of type digest.

iii) The corresponding certificate to the SignerIdentifier is not known to the SSME as defined

in 4.3.

3) “Inconsistent PSID” if the input PSID does not appear in the certificate.

4) “Success” if none of the above conditions hold.

b) Content Type is set only if Result Code is success and indicates the type of content contained in the

input Data.

c) Service Specific Permissions is set only if Result Code is success and Content Type is signed. It

indicates the Service Specific Permissions of the certificate that signed the input Data.

d) Geographic Region is set only if Result Code is success and Content Type is signed. It indicates the

geographic validity region of the certificate that signed the input Data.

e) Assurance Level is set only if Result Code is success and Content Type is signed. It contains the

SubjectAssurance from the ToBeSignedCertificate of the certificate that signed the input Data. If

there was no SubjectAssurance field, this is omitted.

f) Earliest Next CRL Time is set only if Result Code is success and Content Type is signed. It indicates

the earliest nextCrl value from any certificate in the chain that signed the input Data as specified

in 5.1.3.6.

9.3.11.2.4 Effect of receipt

None specified.

9.3.12 Sec-SignedDataVerification

9.3.12.1 Sec-SignedDataVerification.request

9.3.12.1.1 Function

The primitive is used by a SDEE to request that the SDS verifies signed data.

9.3.12.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-SignedDataVerification.request (

 SDEE ID,

 PSID,

Signed Data,

External Data Hash (optional),

External Data Hash Algorithm (optional),

Maximum Full Certificate Chain Length (optional),

Public Key For Self-Signed SPDU (optional),

Relevance: Replay,

Relevance: Generation Time in Past,

Validity Period (optional),

Relevance: Generation Time in Future,

Acceptable Future Data Period (optional),

Generation Time (optional),

Relevance: Expiry Time,

Expiry Time (optional),

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

137

Consistency: Generation Location (optional),

Relevance: Generation Location Distance,

Validity Distance (optional),

Generation Location (optional),

Overdue CRL Tolerance (optional),

Relevance: Expired Certificate

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

138

Name Type Valid range Description

SDEE ID Integer Any The SDEE ID of the SDEE.

PSID PSID Any The PSID derived from context (see 5.2.3.3.2).

Signed Data Ieee1609Dot2-

Data

An Ieee1609Dot2-

Data of type
signedData

The signed data.

External Data

Hash

Octet string Octet string of

length 32

The hash of external data, to be checked against the

extDataHash field in the signedData.

External Data

Hash Algorithm

HashAlgorithm sha256 If External Data Hash is non-empty then this field

indicates the hash algorithm used to generate External

Data Hash as specified in 5.3.1.

Maximum Full

Certificate

Chain Length

Integer Any integer ≥ 2 The maximum length the certificate chain may have

as specified in 5.1.2.

Public Key for

Self-Signed

SPDU

Public

verification key

Any public

verification key

The public verification key to be used to verify the

signature, if the SPDU is self-signed (see 5.2.3.2.2)

Relevance:

Replay

Boolean True

False

If “True”, the SDS carries out replay detection as

specified in 5.2.4.2.6 using SSME-Sec-

ReplayDetection.request. In this case, at least one of

Relevance: Expiry Time and Relevance: Generation

Time in Past should be set to “True”, and Validity

Period shall be provided.

Generation

Time

Time Any The generation time to use in the security processing.

This field is required if the HeaderInfo field in Signed

Data does not contain generationTime.

Relevance:

Generation

Time in Past

Boolean True

False

If “True”, the SDS rejects too-old SPDUs as specified

in 5.2.4.2.2.

Validity Period Time period Any time period The period after the generation time for which the

content is of interest to the recipient. Provided if

Relevance: Replay or Relevance: Generation Time in

Past is “True”.

Relevance:

Generation

Time in Future

Boolean True

False

If “True”, the SDS rejects future SPDUs as specified

in 5.2.4.2.3.

Acceptable

Future Data

Period

Time Any positive time

value

Used in conjunction with Rejection Threshold for

Generation Time in Future to determine if data should

be rejected because its generation time is in the future

as specified in 5.2.4.2.3. Provided if Relevance:

Generation Time in Future is “True”.

Relevance:

Expiry Time

Boolean True

False

If “True”, the SDS rejects SPDUs if the local time is

after the expiry time as specified in 5.2.4.2.4.

Expiry Time Time Any The expiry time to use in the security processing. This

field is required if Relevance: Expiry Time is “True”

and the HeaderInfo field in Signed Data does not

contain expiryTime.

Consistency:

Generation

Location

Boolean True

False

If True, the SDS checks that the generation location is

inside the validity region of the certificate.

Relevance:

Generation

Location

Distance

Boolean True

False

If True, the SDS performs relevance checks based on

the generation location as specified in 5.2.4.2.5.

Validity

Distance

Distance Any positive value The maximum allowed distance between the recipient

and the generation location. This is provided if Reject

Too Distant Messages is “True”.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

139

Name Type Valid range Description

Generation

Location

A 3D location

or “none”

Any value

indicating a position

on or near the

surface of the earth

The generation location. This field is required if the

HeaderInfo field in Signed Data does not contain

generationLocation.

Overdue CRL

Tolerance

Time or “any” Any time period

(e.g., minutes, days,

years), or “Any”

If a CRL relevant to a certificate in the sending chain

was due to be issued more than Overdue CRL

Tolerance time ago, and has not been received, the

chain is rejected.

Relevance:

Expired

Certificate

Boolean True

False

If True, the SDS checks that none of the certificates in

the chain that signed Signed Data have expired per

5.2.4.2.7.

9.3.12.1.3 When generated

The primitive is generated by a SDEE to request that the SDS verifies signed data that was obtained from a

previous Sec-SecureDataPreprocessing.request.

9.3.12.1.4 Effect of receipt

Upon receipt of this primitive, the SDS determines whether the data is valid by the criteria of 5.2. If so

requested by the Relevance: Replay parameter, the SDS invoke SSME-Sec-ReplayDetection.request, with

parameters:

 SDEE ID = the SDEE ID parameter to this primitive

 Signed Data = the Data parameter to this primitive

 Discard Time = either the generation time + Validity Period or the expiry time, whichever comes

earlier

9.3.12.2 Sec-SignedDataVerification.confirm

9.3.12.2.1 Function

The primitive returns the result of the the corresponding request primitive.

9.3.12.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-SignedDataVerification.confirm (

Result Code,

Unrecognized Id (Optional)

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

140

Name Type Valid range Description

Result Code Enumerated Success

Inconsistent input parameters

SPDU-Parsing: Invalid Input

SPDU-Parsing: Unsupported critical information field

SPDU-Parsing: Certificate not found

SPDU-Parsing: Generation time not available

SPDU-Parsing: Generation location not available

SPDU-Certificate-Chain: Not enough information to construct

chain

SPDU-Certificate-Chain: Chain ended at untrusted root

SPDU-Certificate-Chain: Chain was too long for implementation

SPDU-Certificate-Chain: Certificate revoked

SPDU-Certificate-Chain: Overdue CRL

SPDU-Certificate-Chain: Inconsistent expiry times,

SPDU-Certificate-Chain: Inconsistent start times

SPDU-Certificate-Chain: Inconsistent chain permissions

SPDU-Certificate-Chain: Inconsistent validity region

SPDU-Crypto: Verification failure

SPDU-Consistency: Future certificate at generation time

SPDU-Consistency: Expired certificate at generation time

SPDU-Consistency: Expiry date too early

SPDU-Consistency: Expiry date too late

SPDU-Consistency: Generation location outside validity region

SPDU-Consistency: No generation location

SPDU-Consistency: Unauthorized PSID

SPDU-Internal-Consistency: Expiry time before generation time

SPDU-Internal-Consistency: extDataHash doesn’t match

SPDU-Internal-Consistency: no extDataHash provided

SPDU-Internal-Consistency: no extDataHash present

SPDU-Local-Consistency: PSIDs don’t match

SPDU-Local-Consistency: Chain was too long for SDEE

SPDU-Relevance: Generation Time too far in past

SPDU-Relevance: Generation Time too far in future

SPDU-Relevance: Expiry Time in past

SPDU-Relevance: Generation Location too distant

SPDU-Relevance: Replayed SPDU

SPDU-Relevance: Certificate expired

The result of

the validation

operation

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

141

Name Type Valid range Description

Unrecognized

Id

HashedId8 Any Provided if

Result Code is

SPDU-

Parsing:

Certificate not

found, SPDU-

Certificate-

Chain: Not

enough

information to

construct

chain, or

SPDU-

Certificate-

Chain: Chain

ended at

untrusted root

9.3.12.2.3 When generated

The primitive is generated in response to Sec-SignedDataVerification.request. This subclause specifies how

the field Result Code is set. In the description below, “the input XXX” is shorthand for “the parameter XXX

provided to the corresponding invocation of Sec-SignedData.request”. The term “the SPDU YYY was [not]

available”, for YYY taking the values Generation Time, Expiry Time, Generation Location means that YYY

was [not] either encoded in the input Signed Data or provided via the input YYY.

Result Code is set as follows:

a) “Success” if the signed SPDU passed all consistency (as specified in 5.2.3) and relevance (as

specified in 5.2.4) checks requested.

b) “Inconsistent input parameters” if:

1) The input SignedData contained a generation time and the input Generation Time was provided.

2) The input SignedData contained an expiry time and the input Expiry Time was provided.

3) The input SignedData contained a generation location and the input Generation Location was

provided.

c) “SPDU-Parsing: Invalid Input” if the SPDU could not be parsed or is not of type SignedData.

d) “SPDU-Parsing: Unsupported critical information field” if the SPDU contained a critical information

field as identified in Clause 6 which is not supported by the implementation.

e) “SPDU-Parsing: Certificate not found” if the SPDU’s SignerIdentifier is of type digest and the

corresponding certificate is not known to the SSME as defined in 4.3.

f) “SPDU-Parsing: Generation time not available” if the SPDU Generation Time was not available as

defined above.

g) “SPDU-Parsing: Generation location not available” if the input Relevance: Generation Location

Distance was true, and one of the following holds:

1) The SPDU Generation Location was not available as defined above, or

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

142

2) The encoding of the SPDU Generation Location uses one of the “not available” values specified

in 6.3.13, 6.3.14, or 6.3.15 to indicate that generation location was not available at the time the

signature was generated.

h) “SPDU-Certificate-Chain: Not enough information to construct chain” if one of the certificates in the

chain had an issuer value that is not known to the SSME as defined in 4.3.

i) “SPDU-Certificate-Chain: Chain ended at untrusted root” if the certificate chain can be constructed

to a root, i.e., to a certificate with issuer indicating self, where that root is not trusted.

j) “SPDU-Certificate-Chain: Chain was too long for implementation” if the certificate chain is longer

than is supported by the implementation as specified in 0.

k) “SPDU-Certificate-Chain: Certificate revoked” if any certificate in the chain is revoked as specified

in 5.1.3.

l) “SPDU-Certificate-Chain: Overdue CRL” if revocation information for any certificate in the chain

is overdue by more than the input Overdue CRL Tolerance as specified in 5.1.3.6.

m) “SPDU-Certificate-Chain: Inconsistent expiry times” if for some pair of certificates in the chain the

subordinate certificate’s expiry time was after the issuing certificate’s expiry time as specified in

5.1.2.4.

n) “SPDU-Certificate-Chain: Inconsistent start times” if for some pair of certificates in the chain the

subordinate certificate’s start validity time was before the issuing certificate’s start validity time as

specified in 5.1.2.4.

o) “SPDU-Certificate-Chain: Inconsistent chain permissions” if for some pair of certificates in the chain

the subordinate certificate’s permissions are not consistent with the issuing certificate’s permissions

as defined in 5.2.3.2.3.

p) “SPDU-Certificate-Chain: Inconsistent validity region” if for some pair of certificates the validity

region in the subordinate certificate is not wholly contained in the validity region in the issuing

certificate.

q) “SPDU-Crypto: Verification failure” if the signature on the SPDU or on any explicit certificate in

the chain do not pass cryptographic verification as defined in 5.3.1.

r) “SPDU-Consistency: Future certificate at generation time” if the SPDU generation time is before the

start validity time of the signing certificate as specified in 5.1.2.4.

s) “SPDU-Consistency: Expired certificate at generation time” if the SPDU generation time is after the

expiry time of the signing certificate as specified in 5.1.2.4.

t) “SPDU-Consistency: Expiry date too early” if the SPDU expiry time was provided, and that time is

before the start validity time of the signing certificate.

u) “SPDU-Consistency: Expiry date too late” if the SPDU expiry time was provided, and that time is

after the expiry time of the signing certificate.

v) “SPDU-Consistency: Generation location outside validity region” if the input Consistency:

Generation Location was True, the SPDU generation location was provided, and the SPDU

generation location is outside the validity region of the signing certificate as specified in 5.2.3.2.3.

w) “SPDU-Consistency: No generation location” if the input Consistency: Generation Location was

True and one of the following holds:

1) The SPDU Generation Location was not available as defined above, or

2) The encoding of the SPDU Generation Location uses one of the “not available” values specified

in 6.3.13, 6.3.14, or 6.3.15 to indicate that generation location was not available at the time the

signature was generated.

x) “SPDU-Consistency: Unauthorized PSID” if the input PSID does not appear in the signing certificate

as specified in 5.2.3.3.2.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

143

y) “SPDU-Internal-Consistency: Expiry time before generation time” if the SPDU expiry time is

provided and is before the SPDU generation time.

z) “SPDU-Internal-Consistency: extDataHash doesn’t match” if the input Signed Data has a Signed-

DataPayload containing an extDataHash, the input External Data Hash was provided, and the

input External Data Hash hash does not match the extDataHash in the Signed Data.

aa) “SPDU-Internal-Consistency: no extDataHash provided” if the input Signed Data has a SignedData-

Payload containing an extDataHash and the input External Data Hash was not provided.

bb) “SPDU-Internal-Consistency: no extDataHash present” if the the input External Data Hash was

provided but the input Signed Data has a SignedDataPayload that does not contain an extDataHash.

cc) “SPDU-Local-Consistency: PSIDs don’t match” if the input PSID is not the same as the psid field

in the HeaderInfo of the input Signed Data.

dd) “SPDU-Local-Consistency: Chain was too long for SDEE” if the input Maximum Full Certificate

Chain Length was provided and if the length of the signing certificate’s chain is greater than

Maximum Full Certificate Chain Length as specified in 5.2.3.3.1.

ee) “SPDU-Relevance: Generation Time too far in past” if the input Relevance: Generation Time in Past

is True and the generation time is far in the past by the criteria specified in 5.2.4.2.2.

ff) “SPDU-Relevance: Generation Time too far in future” if the input Relevance: Generation Time in

Future is True and the generation time is too far in the future by the criteria specified in 5.2.4.2.3.

gg) “SPDU-Relevance: Expiry Time in past” if the input Relevance: Expiry Time is True and the expiry

time is calculated to be too far in the past by the criteria specified in 5.2.4.2.4.

hh) “SPDU-Relevance: Generation Location too distant” if the input Relevance: Generation Location

Disatnce is True and the generation location is calculated to be too distant by the criteria specified in

5.2.4.2.5.

ii) “SPDU-Relevance: Replayed SPDU” if the input Relevance: Replay is True and the Signed Data is

an exact duplicate of a Signed Data previously submitted to Sec-SignedDataVerification.request with

the same value for the input SDEE ID. This may be implemented via SSME-Sec-

ReplayDetection.request, SSME-Sec-ReplayDetection.confirm.

jj) “SPDU-Relevance: Certificate Expired” if the input Relevance: Expired Certificate is True and any

certificate in the chain that signed Signed Data has expired.

kk) If the input Signed Data fails more than one of the validity conditions, Result Code takes a value

indicating one of the reasons.

If Result Code is SPDU-Parsing: Certificate not found, SPDU-Certificate-Chain: Not enough information to

construct chain, or SPDU-Certificate-Chain: Chain ended at untrusted root, then the field Unrecognized Id

contains the HashedId8 that identifies the unknown certificate, i.e. the digest field from the SignerIdentifier

or the IssuerId field from the last known certificate.

9.3.12.2.4 Effect of receipt

No behavior is specified.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

144

9.3.13 Sec-EncryptedDataDecryption

9.3.13.1 Sec-EncryptedDataDecryption.request

9.3.13.1.1 Function

This primitive is used by a SDEE to request the SDS to decrypt encrypted data with the provided

Cryptomaterial Handle.

9.3.13.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-EncryptedDataDecryption.request (

 Data,

 Cryptomaterial Handle,

Signed Data Recipient Info (optional)

)

Name Type Valid range Description

Data Octet

string

An Ieee1609Dot2-

Data of type
encryptedData

The encrypted data to be decrypted.

Cryptomaterial

Handle

Integer Any CMH in Key Pair Only or Key and Certificate state,

where the private key is for a decryption algorithm.

Alternatively, a Symmetric Crypto Material Handle.

Signed Data

Recipient Info

32-byte

octet

string

Any In the case where the data being decrypted was encrypted

with a key obtained from a SignedData within an Ieee-

1609Dot2Data, the hash of that Ieee1609Dot2Data as

specified in 5.3.5. Otherwise, omitted.

The decrypter can tell which key was used to encrypt an

encrypted SPDU by inspecting the RecipientInfo fields

within the EncryptedData.

9.3.13.1.3 When generated

The primitive is generated as needed within the WAVE Security Services or by other entities or processes.

9.3.13.1.4 Effect of receipt

On receipt, the SDS determines whether the input Cryptomaterial Handle corresponds to any of the

RecipientInfo fields in Data. Cryptomaterial Handle is determined to correspond to a RecipientInfo field

using the following criteria:

a) Cryptomaterial Handle corresponds to a RecipientInfo r of type pskRecipInfo or

symmRecipInfo if both of these conditions hold:

1) Cryptomaterial Handle is a Symmetric Cryptomaterial Handle.

2) The HashedId8 value contained in r is equal to the value returned on invoking Sec-

SymmetricCryptomaterialHandle-HashedId8.request with parameter Cryptomaterial Handle.

b) Cryptomaterial Handle corresponds to a RecipientInfo r of type certRecipInfo if both of these

conditions hold:

1) Cryptomaterial Handle is in state Certificate and Key.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

145

2) The HashedId8 of the certificate referenced by Cryptomaterial Handle is equal to the recipientId

field in the PKRecipientInfo.

c) Cryptomaterial Handle corresponds to a RecipientInfo r of type signedDataRecipInfo if both

of these conditions hold:

1) Cryptomaterial Handle is in state Key Pair Only.

2) The parameter Signed Data Recipent Info was provided and the low-order eight bytes of that

parameter are equal to the recipientId field in the PKRecipientInfo.

d) Cryptomaterial Handle corresponds to a RecipientInfo r of type rekRecipInfo if both of these

conditions hold:

1) Cryptomaterial Handle is in state Key Pair Only.

2) The HashedId8 of the public key referenced by Cryptomaterial Handle is equal to the

recipientId field in the PKRecipientInfo.

If Cryptomaterial Handle corresponds to one of the entries in EncryptedData.recipients, the SDS

attempts to decrypt the encrypted data with the cryptomaterial referenced by Cryptomaterial Handle.

9.3.13.2 Sec-EncryptedDataDecryption.confirm

9.3.13.2.1 Function

The primitive returns the result of the the corresponding request primitive.

9.3.13.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

Sec-EncryptedDataDecryption.confirm (

 Result Code,

 Data

)

Name Type Valid range Description

Result

Code

Enumerated Success

No decryption key available

Unsupported critical information

field

Couldn’t decrypt key

Couldn’t decrypt data

Invalid form for plaintext

The result of the decryption operation.

Data Octet string An Ieee1609Dot2Data of any type If Result Code is “success”, the decrypted data.

Otherwise, undefined.

9.3.13.2.3 When generated

The primitive is generated in response to Sec-EncryptedDataDecryption.request. This subclause specifies

how the field Result Code is set. In the description below, “the input XXX” is shorthand for “the parameter

XXX provided to the corresponding invocation of Sec-EncryptedDataDecryption.request”.

a) Result Code is set as follows:

1) “Invalid input” if the input Data couldn’t be parsed.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

146

2) “No decryption key available” if the input Cryptomaterial Handle did not correspond to any of

the RecipientInfo fields in the EncryptedData by the criteria specified under Sec-

EncryptedDataDecryption.request.

3) “Unsupported critical information field” if the recipients field of the EncryptedData

contains more entries than the implementation supports.

4) “Couldn’t decrypt key” if the attempt to decrypt the data encryption key material in the

RecipientInfo failed.

5) “Couldn’t decrypt data” if the attempt to decrypt the data in the SymmetricCiphertext, using

decryption with AES-CCM as specified in 5.3.6, failed.

6) “Invalid form for plaintext” if the decrypted plaintext did not have the form of a valid

Ieee1609Dot2Data.

7) “Success” if none of the above conditions hold.

b) Data is set only if Result Code is success and contains the decrypted data.

9.3.13.2.4 Effect of receipt

None specified.

9.4 SSME SAP

9.4.1 SSME-CertificateInfo

9.4.1.1 SSME-CertificateInfo.request

9.4.1.1.1 Function

This primitive is used by a process to query the SSME for information about the contents, revocation status,

and inherited permissions of a certificate.

9.4.1.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-CertificateInfo.request (

 Identifier Type,

 Identifier

)

Name Type Valid range Description

Identifier

Type

Enumerated Certificate

HashedId3

HashedId8

HashedId10

Indicates the type of input data used to

identify the certificate

Identifier Octet string Any The encoded certificate, HashedId3,

HashedId8, or HashedId10 identifying the

certificate in question

9.4.1.1.3 When generated

The primitive is generated as needed within the WAVE Security Services or by other entities or processes.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

147

9.4.1.1.4 Effect of receipt

On receipt, the SSME determines whether the certificate indicated by Identifier is known to it. If so, it

retrieves the information stored about that certificate as specified in 4.3. It returns the stored information, or

an indication that the certificate is unknown, or an indication that Identifier identifies two or more certificates

known to the SSME (which is possible if Identifier Type is HashedId8 or HashedId10), via SSME-Certificate-

Info.confirm.

9.4.1.2 SSME-CertificateInfo.confirm

9.4.1.2.1 Function

This primitive returns the certificate identified in the corresponding request, if found.

9.4.1.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-CertificateInfo.confirm (

 Result Code

 Certificate Data,

Geographic Scope,

Last Received CRL Time,

 Next Expected CRL Time,

Trust Anchor

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

148

Name Type Valid range Description

Result Code Enumerated Certificate not found

Multiple certificates

identified

Not yet verified

Verified and trusted

No trust anchor

Chain too long for

implementation

Not cryptographically valid

Inconsistent permissions in

chain

Revoked

Dubious

Unsupported critical

information fields

Invalid encoding

The result of the request made in the

corresponding request primitive.

Certificate Data Array of octet

strings

One or more validly

encoded Certificates

The certificate or certificates indicated by

the corresponding request primitive.

Geographic Scope An array of

geographic

regions

 The geographic region relevant to the

certificate: the geographic region contained

in the certificate or, if the certificate does

not contain a geographic region, the

geographic region from the first certificate

above it in the chain to have one.

Last Received CRL

Time

Date or “none” Any date in the past If available, the generation time of the last

CRL received that would have contained

the certificate if it had been revoked.

Otherwise, “none”.

Next Expected CRL

Time

Date or

“unknown”

Any date after Last

Received CRL Time

If available, the next time a CRL is going to

be generated that could contain the

certificate. This time may be in the past or

the future. Otherwise, “unknown”.

Trust Anchor Boolean True,

False

Whether or not the certificate is a trust

anchor.

Verified Boolean True, False True indicates that the cryptographic

validity of the certificate is known to the

SSME, either because the caller indicated

that the certificate had been verified when it

was added via SSME-

AddCertificate.request, or because the

certificate was verified later via SSME-

VerifyCertificate.request. False indicates

that the cryptographic validity is not

established, i.e., that Verified was set to

“False” on every invocation of SSME-

AddCertificate.request with that certificate

and that SSME-VerifyCertificate.request

has not been subsequently invoked.

9.4.1.2.3 When generated

The primitive is generated in response to SSME-CertificateInfo.request. The parameters are set as follows.

In the description below, “the input XXX” is shorthand for “the parameter XXX provided to the corresponding

invocation of SSME-CertificateInfo.request”.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

149

a) Result Code is set as follows:

1) If the input Identifier Type was HashedId8 or HashedId10:

i) If the input Identifier did not correspond to any certificate known to the SSME, Result

Code is set to “certificate not found”.

ii) If the input Identifier was the HashedId8 or HashedId10 of more than one certificate

known to the SSME, Result Code is set to “multiple certificates identified” and Certificate

Data contains all the certificates that correspond to the input Identifier.14

2) If the certificate has not yet been verified, i.e., if Verified was set to “False” on every invocation

of SSME-AddCertificate.request with that certificate and that SSME-VerifyCertificate.request

has not been subsequently invoked, Result Code is set equal to “Not yet verified”.

3) Otherwise the cryptographic validity of the certificate is known to the SSME, either because

the caller indicated that the certificate had been verified when it was added via SSME-

AddCertificate.request, or because the certificate was verified later via SSME-

VerifyCertificate.request. In this case, if one of the following error conditions holds, Result

Code is set to indicate that error condition as follows:

i) “No trust anchor” if the chain from the certificate does not end at a known trust anchor

(see 5.1.2.1).

ii) “Chain too long for implementation” if the chain is longer than the implementation

supports (see 5.1.2.3).

iii) “Not cryptographically valid” if any certificate in the chain fails to verify

cryptographically (see 5.1.2.3).

iv) “Unknown cryptographic validity” if the certificate has not been verified.

v) “Inconsistent permissions in chain” if the permissions in the chain are inconsistent (see

5.1.2.4).

vi) “Revoked” if the certificate has been revoked (see 5.1.3).

vii) “Dubious” if the revocation information relevant to the certificate is overdue (see 5.1.3.6).

viii) “Unsupported critical information fields” if the certificate or a certificate in its chain

contains an unsupported critical information field (see 5.2.5).

ix) “Invalid encoding” if the certificate or a certificate in its chain is not a valid encoding of

the data structures in Clause 6.

4) If more than one of the error conditions in step 3) holds, Result Code is set to indicate any one

of the applicable error conditions.

5) If none of the above conditions apply, Result Code is set to “verified and trusted”.

b) Certificate Data is set equal to the encoded certificate indicated by the input Identifier. If Identifier

identifies more than one certificate, Certificate Data is an array of all known encoded certificates

that correspond to the input Identifier.

c) Last Received CRL Time is the last time relevant revocation information was received, if any (see

5.1.3).

d) Next Expected CRL Time is the next time revocation information is expected to be received, if any

(see 5.1.3). This time may be in the past.

e) Trust Anchor indicates whether or not the certificate has been marked as a trust anchor within the

SSME.

14 In this case the status of each individual certificate in the array is not indicated; the status of a particular

certificate can be obtained by invoking SSME-CertificateInfo.request with that certificate as the Identifier

parameter.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

150

9.4.1.2.4 Effect of receipt

None specified.

9.4.2 SSME-AddTrustAnchor

9.4.2.1 SSME-AddTrustAnchor.request

9.4.2.1.1 Function

The primitive is used by a process to add a trust anchor to the SSME’s store of trust anchors.

9.4.2.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-AddTrustAnchor.request (

 Certificate

)

Name Type Valid range Description

Certificate 1609.2 certificate Any 1609.2 certificate The certificate to be added as a trust anchor

9.4.2.1.3 When generated

The primitive is generated as needed by a process to add a trust anchor to the SSME.

9.4.2.1.4 Effect of receipt

On receipt, the SSME determines whether Certificate has the following properties:

 It is a correctly formed certificate.

 It has not been revoked.

 If the IssuerIdentifier is of type self, the certificate verifies with the public key indicated by the

verifyKeyIndicator field in theToBeSignedCertificate.

If all of these conditions hold, the SSME adds Certificate to its store of trust anchors. The SSME then invokes

the corresponding confirm primitive to return the result of the processing.

If Certificate is an implicit certificate, subsequent processing might be made more efficient if the associated

public key is also calculated and stored.

9.4.2.2 SSME-AddTrustAnchor.confirm

9.4.2.2.1 Function

The primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.4.2.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

151

SSME-AddTrustAnchor.confirm (

 Result Code

)

Name Type Valid range Description

Result Code Enumerated Success

Invalid input

Certificate revoked

Certificate did not verify

Indicates the result of the

associated request

9.4.2.2.3 When generated

The primitive is generated in response to the corresponding request.

9.4.2.2.4 Effect of receipt

No behavior is specified.

9.4.3 SSME-AddCertificate

9.4.3.1 SSME-AddCertificate.request

9.4.3.1.1 Function

This primitive allows a process to add a certificate to the SSME’s store of certificates.

9.4.3.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-AddCertificate.request (

 Certificate,

Verified

)

Name Type Valid range Description
Certificate 1609.2

certificate

Any 1609.2 certificate The certificate to be added

Verified Boolean Whether or not the certificate has been

cryptographically verified (see 9.3.11.1.2)

9.4.3.1.3 When generated

The primitive is generated as needed by any process or entity that wishes to add a certificate to the SSME.

9.4.3.1.4 Effect of receipt

On receipt, the SSME determines whether Certificate is a correctly formed certificate. If it is:

a) The SSME adds Certificate to its store of certificates.

b) The SSME sets the Last Received CRL Time and Next Expected CRL Time to the values set by the

most recent appropriate invocation of SSME-AddRevocationInfo.request.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

152

c) The SSME increments its count of the number of P2PCD responses with respect to c, the HashedId3

corresponding to Certificate, for each SDEE for which such a count is being maintained. In the

terminology of D.4.2.1, the SDEE determines whether p2pcdResponseCount(c, s) exists for any SDEE

ID s, and, if so, the SSME increments all instances of p2pcdResponseCount(c, s).

d) The SSME determines whether Certificate corresponds to any certificate which has been noted as a

potential subject of a P2PCD learning request. If this is the case, it removes that certificate as a

potential subject. In the terminology of D.4.2.1, the SSME determines whether there is an entry equal

to h in queuedMissingCertIndicators(s) for any SDEE ID s, where h is the HashedId8 corresponding

to Certificate and queuedMissingCertIndicators is the array specified in D.4.2.1.1. If so, the SSME

removes h from all instances of queuedMissingCertIndicators(s) where it appears.

The SSME then invokes the corresponding confirm primitive to return the result of the processing.

9.4.3.1.5 Effect of receipt

No behavior is specified.

9.4.3.2 SSME-AddCertificate.confirm

9.4.3.2.1 Function

The primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.4.3.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-AddCertificate.confirm (

Result Code

)

Name Type Valid range Description

Result Code Enumerated Success

Invalid input

Indicates the result of the

associated request

9.4.3.2.3 When generated

The primitive is generated in response to the corresponding request.

9.4.3.2.4 Effect of receipt

No behavior is specified.

9.4.4 SSME-VerifyCertificate

9.4.4.1 SSME-VerifyCertificate.request

9.4.4.1.1 Function

This primitive is used by a process to request the SSME to verify a certificate.

9.4.4.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

153

SSME-VerifyCertificate.request (

 Certificate,

 Signed SPDU (optional)

)

Name Type Valid range Description

Certificate Certificate A valid Certificate The certificate to be verified

Signed SPDU Ieee1609Dot2-

Data

An Ieee1609Dot2Data of type
signedData

If Certificate is an ImplicitCertificate, a

signed SPDU that indicates it was signed

with Certificate

9.4.4.1.3 When generated

The primitive is generated as needed within the WAVE Security Services or by other entities or processes.

9.4.4.1.4 Effect of receipt

On receipt, the SSME attempts to verify Certificate (if it is an ExplicitCertificate) or attempts to verify the

signature on signed SPDU (if Certificate is an ImplicitCertificate). The result is returned via SSME-Verify-

Certificate.confirm. If the certificate verifies correctly, the SSME updates the stored information about the

certificate to indicate that it has been verified. If Certificate is an ExplicitCertificate and does not verify

correctly, the SSME updates the stored information about the certificate to indicate that it has failed

cryptographic verification. If Certificate is an ImplicitCertificate and does not verify correctly, the SSME

takes no action because in this case it is ambiguous whether Certificate or signed SPDU is invalid.

9.4.4.2 SSME-VerifyCertificate.confirm

9.4.4.2.1 Function

This primitive returns the result of the corresponding request primitive.

9.4.4.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-VerifyCertificate.confirm (

 Result Code

)

Name Type Valid range Description

Result Code Enumerated Verified

No trust anchor

Chain too long for implementation

Not cryptographically valid

Inconsistent permissions in chain

Revoked

Dubious

Unsupported critical information fields

Invalid encoding

The result of the verification

request

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

154

9.4.4.2.3 When generated

The primitive is generated in response to SSME-VerifyCertificate.request. The parameters are set as follows.

In the description below, “the input XXX” is shorthand for “the parameter XXX provided to the corresponding

invocation of SSME-CertificateInfo.request”.

a) If one of the following error conditions holds, Result Code is set to indicate that error condition as

follows:

1) “No trust anchor” if the chain from the certificate does not end at a known trust anchor (see

5.1.2.1).

2) “Chain too long for implementation” if the chain is longer than the implementation supports

(see 5.1.2.3).

3) “Not cryptographically valid” if any certificate in the chain fails to verify cryptographically

(see 5.1.2.3).

4) “Inconsistent permissions in chain” if the permissions in the chain are inconsistent (see 5.1.2.4).

5) “Revoked” if the certificate has been revoked (see 5.1.3).

6) “Dubious” if the revocation information relevant to the certificate is overdue (see 5.1.3.6).

7) “Unsupported critical information fields” if the certificate or a certificate in its chain contains

an unsupported critical information field (see 5.2.5).

8) “Invalid encoding” if the certificate or a certificate in its chain is not a valid encoding of the

data structures in Clause 6.

b) If more than one of the error conditions in step a) holds, Result Code is set to indicate any one of the

applicable error conditions.

c) Otherwise, Result Code is set to “verified and trusted”.

9.4.4.2.4 Effect of receipt

None specified.

9.4.5 SSME-DeleteCertificate

9.4.5.1 SSME-DeleteCertificate.request

9.4.5.1.1 Function

This primitive allows a process to delete a certificate from the SSME’s store of certificates.

9.4.5.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-DeleteCertificate.request (

Identifier Type,

 Identifier

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

155

Name Type Valid range Description

Identifier

Type

Enumerated Certificate

HashedId8

HashedId10

Indicates the type of input data used to

identify the certificate

Identifier Octet string Any The encoded certificate, HashedId8, or

HashedId10 identifying the certificate in

question

9.4.5.1.3 When generated

The primitive is generated as needed by any trusted entity that communicates with the SSME.

9.4.5.1.4 Effect of receipt

On receipt, if Identifier identifies a certificate known to the SSME, the SSME deletes that certificate and all

information associated with it.

9.4.5.2 SSME-DeleteCertificate.confirm

9.4.5.2.1 Function

The primitive returns the result of the corresponding request primitive.

9.4.5.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-DeleteCertificate.confirm (

Result Code

)

Name Type Valid range Description

Result Code Enumerated Success

Invalid input

Indicates the result of the

associated request

9.4.5.2.3 When generated

The primitive is generated in response to the corresponding request.

9.4.5.2.4 Effect of receipt

No behavior is specified.

9.4.6 SSME-AddHashIdBasedRevocation

9.4.6.1 SSME-AddHashIdBasedRevocation.request

9.4.6.1.1 Function

The primitive is used to provide the SSME with Hash ID-based revocation information relating to a certificate

as specified in 5.1.3.5.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

156

9.4.6.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-AddHashIdBasedRevocation.request (

 Identifiers,

CrlCraca,

CRL Series,

Expiry

)

Name Type Valid range Description

Identifiers Array of

HashedId10

As stated under

Type

The HashedId10 values identifying the revoked certificates

CrlCraca HashedId8 An octet string of

length 8

An identifier for the CRACA (see 5.1.3)

CRL series Integer 1…232 − 1 The CRL series that includes the revocation information

Expiry Time Any time in the

future

The time at which the indicated revocation information

may be removed

9.4.6.1.3 When generated

The primitive is generated by a process or entity that obtains certificate revocation information. This

information may be obtained from a CRL or by other means out of the scope of this standard.

9.4.6.1.4 Effect of receipt

The SSME stores the revocation information and returns a confirm primitive.

If the revoked certificate is a CA certificate, the SSME may choose to locate any certificates issued by that

CA within the SSME internal storage, and mark those certificates as also revoked. This may save time when

processing subsequently received signed data, as it enables the SSME to identify a signing certificate as

revoked immediately, rather than having to use the full processing given in this standard.

9.4.6.2 SSME-AddHashIdBasedRevocation.confirm

9.4.6.2.1 Function

This primitive returns the result of the corresponding request.

9.4.6.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-AddHashIdBasedRevocation.confirm (

 Result Code

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

157

Name Type Valid range Description

Result Code Enumerated Success

Invalid input

Indicates the result of the associated request

9.4.6.2.3 When generated

The primitive is generated in response to the corresponding request.

9.4.6.2.4 Effect of receipt

No behavior is specified.

9.4.7 SSME-AddIndividualLinkageBasedRevocation

9.4.7.1 SSME-AddIndividualLinkageBasedRevocation.request

9.4.7.1.1 Function

The primitive is used by a process to provide the SSME with individual linkage based revocation information

as specified in 5.1.3.4.

9.4.7.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-AddIndividualLinkageBasedRevocation.request (

 CRLCraca,

 CRL Series,

 RevocationInfos

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

158

Name Type Valid range Description

CRLCraca HashedId8 An octet string of

length 8

An identifier for the CRACA (see

5.1.3)

CRL series Integer 1…232 − 1 The CRL series that includes the

revocation information

RevocationInfos Array of RevocationInfo,

each containing the entries

below

 iRev Integer 0..216 − 1 An indication of the time period

when the revocation information

becomes effective

 iMax Integer 0..216 − 1 An indication of the time period

when the revocation information

stops being effective

 jMax Integer 0..28 − 1 The number of certificates within

each time period

 Linkage Seed 1 Octet String Octet string of

length 16

The linkage seed from the first

linkage authority

 Linkage Authority

Identifier 1

Octet String Octet string of

length 2

An indication of the linkage

authority that generated linkage

seed 1, an octet string of length 2

 Linkage Seed 2 Octet String Octet string of

length 16

The linkage seed from the second

linkage authority

 Linkage Authority

Identifier 2

Octet String Octet string of

length 2

An indication of the linkage

authority that generated linkage

seed 2, an octet string of length 2

9.4.7.1.3 When generated

The primitive is generated by a process or entity that obtains certificate revocation information. This

information may be obtained from a CRL or by other means out of the scope of this standard.

9.4.7.1.4 Effect of receipt

The SSME stores the revocation information and returns a confirm primitive.

9.4.7.2 SSME-AddIndividualLinkageBasedRevocation.confirm

9.4.7.2.1 Function

This primitive returns the result of the corresponding request.

9.4.7.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-AddIndividualLinkageBasedRevocation.confirm (

 Result Code

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

159

Name Type Valid range Description

Result Code Enumerated Success

Invalid input

Indicates the result of the associated request

9.4.7.2.3 When generated

The primitive is generated in response to the corresponding request.

9.4.7.2.4 Effect of receipt

No behavior is specified.

9.4.8 SSME-AddGroupLinkageBasedRevocation

9.4.8.1 SSME-AddGroupLinkageBasedRevocation.request

9.4.8.1.1 Function

The primitive is used by a process to provide the SSME with group linkage based revocation information as

specified in 5.1.3.4.

9.4.8.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-AddGroupLinkageBasedRevocation.request (

 CrlCraca,

 CRL Series,

RevocationInfos

)

Name Type Valid range Description

CrlCraca HashedId8 An octet string

of length 8

An identifier for the CRACA

(see 5.1.3)

CRL series Integer 1…232 − 1 The CRL series that includes the

revocation information

RevocationInfos Array of RevocationInfo, each

containing the entries below

 iRev Integer 0..216 − 1 An indication of the time period

when the revocation information

becomes effective

 iMax Integer 0..216 − 1 An indication of the time period

when the revocation information

stops being effective

 Linkage Seed 1 Octet string Octet string of

length 16

The linkage seed from the first

linkage authority

 Linkage Authority

Identifier 1

Octet string Octet string of

length 2

An indication of the linkage

authority that generated linkage

seed 1, an octet string of length 2

 Linkage Seed 2 Octet string Octet string of

length 16

The linkage seed from the

second linkage authority

 Linkage Authority

Identifier 2

Octet string Octet string of

length 2

An indication of the linkage

authority that generated linkage

seed 2, an octet string of length 2

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

160

9.4.8.1.3 When generated

The primitive is generated by a process or entity that obtains certificate revocation information. This

information may be obtained from a CRL or by other means out of the scope of this standard.

9.4.8.1.4 Effect of receipt

The SSME stores the revocation information and returns a confirm primitive.

9.4.8.2 SSME-AddGroupLinkageBasedRevocation.confirm

9.4.8.2.1 Function

This primitive returns the result of the corresponding request.

9.4.8.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-AddGroupLinkageBasedRevocation.confirm (

 Result Code

)

Name Type Valid range Description

Result Code Enumerated Success

Invalid input

Indicates the result of the associated request

9.4.8.2.3 When generated

The primitive is generated in response to the corresponding request.

9.4.8.2.4 Effect of receipt

No behavior is specified.

9.4.9 SSME-AddRevocationInfo

9.4.9.1 SSME-AddRevocationInfo.request

9.4.9.1.1 Function

The primitive is used to update the SSME’s information about the status of a series of revocation information.

9.4.9.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-AddRevocationInfo.request (

CRL Type,

 CRL Series,

CRACA ID,

Issue Date,

Next Crl

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

161

Name Type Valid range Description

CRL Type Enumerated value Id Only

Id

Expiry

The type of the revocation information

CRL Series Integer 1…232 − 1 The CRL series value from the revocation

information

CRACA ID Octet string An octet string of

length 8

The low-order eight octets of the hash of the

CRACA ID associated with the revocation

information

Issue Date Time Any date prior to

current date

The issue date of the revocation information

Next CRL Time Any time after Issue

Date

The time when the next revocation information in

this series is expected to be issued

9.4.9.1.3 When generated

This primitive is generated by an entity that receives revocation information.

9.4.9.1.4 Effect of receipt

On receipt of this primitive the SSME updates the CRL information as listed above. For every known

certificate that might be present on the CRL, the SSME updates the Last Received CRL Time to Issue Date

and the Next Expected CRL Time to Next CRL.

9.4.9.2 SSME-AddRevocationInfo.confirm

9.4.9.2.1 Function

The primitive acknowledges the receipt of the corresponding request primitive.

9.4.9.2.2 Semantics of the service primitive

This primitive takes no parameters.

9.4.9.2.3 When generated

This primitive is generated in response to the corresponding request primitive.

9.4.9.2.4 Effect of receipt

No behavior is specified.

9.4.10 SSME-RevocationInformationStatus

9.4.10.1 SSME-RevocationInformationStatus.request

9.4.10.1.1 Function

The primitive is used by a process to request CRL information.

9.4.10.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

 SSME-RevocationInformationStatus.request (

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

162

CRL Series,

CRACA ID

)

Name Type Valid range Description

CRL Series Integer 1…232 − 1 The CRL series value from the revocation information

CRACA ID Octet string An octet string of

length 8

The low-order eight octets of the hash of the CRACA

certificate

9.4.10.1.3 When generated

This primitive is generated by any entity to request the status of revocation information.

9.4.10.1.4 Effect of receipt

On receipt of this primitive, the SSME retrieves information about the revocation information identified by

CRL Series and CRACA ID. It returns that information, if available, to the process via SSME-

RevocationInformationStatus.confirm.

9.4.10.2 SSME-RevocationInformationStatus.confirm

9.4.10.2.1 Function

The primitive returns the values calculated in the processing specified for the corresponding request primitive.

9.4.10.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-RevocationInformationStatus.confirm (

Result Code,

 Revocation Type,

Issue Date,

Next CRL

)

Name Type Valid range Description

Result Code Enumerated Success

Unrecognized identifier

Expired

Not issued yet

Missing

Indicates the result of the associated request

Revocation Type Enumerated

value

Hash ID based

Linkage ID based

The type of the entries in the CRL

Issue Date Time Any date prior to current

date

The issue date of the CRL

Next CRL Time Any time after Issue Date The time when the next CRL is expected to

be issued

9.4.10.2.3 When generated

This primitive is generated in response to the corresponding request primitive.

9.4.10.2.4 Effect of receipt

No behavior is specified.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

163

9.4.11 SSME-P2PcdResponseGenerationService

9.4.11.1 SSME-P2pcdResponseGenerationService.request

9.4.11.1.1 Function

This primitive indicates that a P2PCD Entity requests to be notified when a P2PCD learning response is to

be generated.

9.4.11.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-P2pcdResponseGenerationService.request (

 SDEEs

)

Name Type Valid range Description

SDEEs Array of

integer, or

“all”

Any The identifier of the SDEEs for which the

invoking P2PCD process wishes to receive

response generation indications

9.4.11.1.3 When generated

The primitive is generated as needed by a P2PCD process.

9.4.11.1.4 Effect of receipt

On receipt, the SSME generates a SSME-P2pcdResponseGenerationService.confirm indicating whether the

request is accepted. On acceptance, the invoking P2PCD process receives response generation indications

via SSME-P2pcdResponseGeneration.indication.

9.4.11.2 SSME-P2pcdResponseGenerationService.confirm

9.4.11.2.1 Function

This primitive confirms the acceptance of the corresponding request.

9.4.11.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-P2pcdResponseGenerationService.confirm (

 SDEE IDs

)

Name Type Valid range Description

SDEE IDs Array of integers, or

“all”

 Indicates the SDEEs for which the P2PCD process

receives response generation indications

9.4.11.2.3 When generated

The primitive is generated in response to SSME-P2pcdResponseGenerationService.request.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

164

9.4.11.2.4 Effect of receipt

The P2PCD Entity may take action based on the confirmation.

9.4.12 SSME-P2pcdResponseGeneration

9.4.12.1 SSME-P2pcdResponseGeneration.indication

9.4.12.1.1 Function

This primitive indicates that the conditions for generation of a P2PCD response have been met.

9.4.12.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-P2pcdResponseGeneration.indication (

 Certificates

)

Name Type Valid range Description

Certificates Array of validly

encoded Certificate

 The certificates to be included in the P2PCD

response

9.4.12.1.3 When generated

The primitive is generated when the conditions for generation of a P2PCD response have been met.

9.4.12.1.4 Effect of receipt

The receiving P2PCD Entity may generate and send an IEEE1609dot2Peer2PeerPDU as defined in 8.4.1.

9.4.13 SSME-P2pcdConfiguration

9.4.13.1 SSME-P2pcdConfiguration.request

9.4.13.1.1 Function

This primitive allows an invoking entity to update the peer-to-peer certificate distribution parameters relevant

to a particular SDEE as specified in 8.2.3.

9.4.13.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-P2pcdConfiguration.request (

SDEE ID,

p2pcd_maxResponseBackoff,

p2pcd_responseActiveTimeout,

p2pcd_requestActiveTimeout,

p2pcd_observedRequestTimeout,

p2pcd_currentlyUsedTriggerCertificateTime,

p2pcd_responseCountThreshold

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

165

Name Type Valid range Description

SDEE ID Integer or “all” Any The ID of the SDEE for which this

configuration applies, or “all”

p2pcd_max-

ResponseBackoff

Time Any positive time The maximum backoff time when

responding to a request

p2pcd_response-

ActiveTimeout

Time Any positive time The time after which a response-active state

ends with respect to a particular trigger

certificate

p2pcd_request-

ActiveTimeout

Time Any positive time The time after which a request-active state

ends with respect to a particular trigger

certificate

p2pcd_observed-

RequestTimeout

Time Any positive time The time after which a request-active state

ends with respect to certificate indicated in a

P2PCD learning request from a different

WAVE device

p2pcd_currentlyUsed-

TriggerCertificateTime

Time Any positive time The time used to determine whether a trigger

certificate is “currently used”.

p2pcd_response-

CountThreshold

Integer Any integer > 0 A number used to determine whether or not

a response is sent to a particular P2PCD

request

9.4.13.1.3 When generated

The primitive is generated as needed by a management process.

9.4.13.1.4 Effect of receipt

When received the SSME updates the indicated parameters with the indicated values.

9.4.13.2 SSME-P2pcdConfiguration.confirm

9.4.13.2.1 Function

This primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.4.13.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-P2pcdConfiguration.confirm (

 Result Code

)

Name Type Valid range Description

Result Code Enumerated Success, failure Indicates the result of the associated request

9.4.13.2.3 When generated

The primitive is generated in response to SSME-P2pcdConfiguration.request.

9.4.13.2.4 Effect of receipt

None specified.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

166

9.5 SSME-Sec SAP

9.5.1 SSME-Sec-ReplayDetection

9.5.1.1 SSME-Sec-ReplayDetection.request

9.5.1.1.1 Function

This primitive allows any SDEE to determine whether received signed data is a replay of signed data that has

already been received by that entity, and to request the SSME to store that signed data for future replay

detection.

9.5.1.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-Sec-ReplayDetection.request (

 SDEE ID,

 Data,

 Discard Time

)

Name Type Valid range Description

SDEE ID Integer Any The SDEE ID that identifies the SDEE

Data Octet string An octet string The encoded ToBeSignedData and signing

certificate that are to be checked for being a

replay

Discard Time Time Any time in the future The time at which the data provided as the Data

parameter may be discarded and no longer

checked for discard

9.5.1.1.3 When generated

The primitive is generated during the execution of Sec-SignedDataVerification.request as specified in the

specification of that primitive.

9.5.1.1.4 Effect of receipt

On receipt of this primitive, the SSME determines whether the input Data has already been received by the

entity indicated by the SDEE ID, and stores Data for use in future replay detection. The result of the replay

detection is returned to the SDS by use of the corresponding confirm primitive.

The following processing gives correct output from the corresponding confirm primitive.

a) Create the variable Result Code, to be used to return the result of the replay detection operation to

the SDS.

b) If a set (SDEE ID, Data, Discard Time) have already been stored by the SSME, and if the current

time is not later than Discard Time, set Result Code to “replay”. Otherwise, set Result Code to “not

replay”.

c) Store the set (SDEE ID, Data, Discard Time).

d) Invoke the corresponding confirm primitive to return Result Code.

NOTE—An implementation has the option of no longer storing (SDEE ID, Data, Discard Time) after Discard Time has

passed.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

167

9.5.1.2 SSME-Sec-ReplayDetection.confirm

9.5.1.2.1 Function

This primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.5.1.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-Sec-ReplayDetection.confirm (

 Result Code

)

Name Type Valid range Description

Result Code Enumerated Replay

Not replay

Indicates the result of the associated request

9.5.1.2.3 When generated

The primitive is generated in response to SSME-Sec-ReplayDetection.request.

9.5.1.2.4 Effect of receipt

Specified in the specification of the invoking process.

9.5.2 SSME-Sec-IncomingP2pcdInfo

9.5.2.1 SSME-Sec-IncomingP2pcdInfo.request

9.5.2.1.1 Function

This primitive is used by the SSME to determine whether to initiate activities associated with peer-to-peer

certificate distribution as a result of a signed SPDU received by a SDEE and passed to Sec-SecureData-

Preprocessing.request.

9.5.2.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-Sec-IncomingP2pcdInfo.request (

 SDEE ID,

Certificate (optional),

P2pcdLearningRequest (optional)

)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

168

Name Type Valid range Description

SDEE ID Integer Any The ID of the SDEE ID that invoked Sec-

SecureDataPreprocessing.request

Certificate Certificate An array of encoded

Certificate as defined in

6.4.2

The certificate field from the SignerIdentifier

that signed the signed SPDU

P2pcdLearningRequest HashedId3 Any The p2pcdLearningRequest field from the

signed SPDU

9.5.2.1.3 When generated

The primitive is generated by the SDS if necessary in the course of executing Sec-SecureData-

Preprocessing.request.

9.5.2.1.4 Effect of receipt

On receipt of this primitive, the SSME carries out the operations specified in 8.2.4.1, step a)2), and 8.2.4.2,

step a)1). One possible implementation of this is specified in D.4.3.2.

9.5.2.2 SSME-Sec-IncomingP2pcdInfo.confirm

9.5.2.2.1 Function

This primitive confirms the reception of the corresponding request primitive and informs the caller of state

changes made as a result.

9.5.2.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-Sec-IncomingP2pcdInfo.confirm (

 Request Active for Certificate

Request Active for P2PCD Learning Request

Response Active for P2PCD Learning Request

)

Name Type Valid range Description

Request Active for

Certificate

Boolean True, False Whether the SSME is in a request-active

state for the certificate in the signed SPDU

Request Active for

P2PCD Learning

Request

Boolean True, False Whether the SSME is in a request-active

state for the p2pcdLearningRequest in

the signed SPDU

Response Active for

P2PCD Learning

Request

Boolean True, False Whether the SSME is in a response-active

state for the p2pcdLearningRequest in

the signed SPDU

9.5.2.2.3 When generated

The primitive is generated in response to SSME-Sec-IncomingP2pcdInfo.request.

9.5.2.2.4 Effect of receipt

Specified in the specification of the invoking process.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

169

9.5.3 SSME-Sec-OutgoingP2pcdInfo

9.5.3.1 SSME-Sec-OutgoingP2pcdInfo.request

9.5.3.1.1 Function

This primitive is used by the SDS to request the SSME to provide a p2pcdLearningRequest for inclusion in

a signed SPDU.

9.5.3.1.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-Sec-OutgoingP2pcdInfo.request (

 SDEE ID,

Certificate

)

Name Type Valid range Description

SDEE ID Integer Any The ID of the SDEE ID that invoked Sec-

SecureDataPreprocessing.request

Certificate Certificate An encoded Certificate

as defined in 6.4.2

The certificate that is to be used to sign the

signed SPDU

9.5.3.1.3 When generated

The primitive is generated by the SDS in the course of executing Sec-SignedData.request.

9.5.3.1.4 Effect of receipt

On receipt of this primitive, the SSME carries out the operations specified in 8.2.4.1, step b)1). One possible

implementation of this is specified in D.4.3.3.

9.5.3.2 SSME-Sec-OutgoingP2pcdInfo.confirm

9.5.3.2.1 Function

This primitive returns the values calculated in the processing specified for the corresponding request

primitive.

9.5.3.2.2 Semantics of the service primitive

The parameters of the primitive are as follows:

SSME-Sec-OutgoingP2pcdInfo.confirm (

 p2pcdLearningRequest (optional)

)

Name Type Valid range Description

p2pcdLearningRequest HashedId3 The p2pcdLearningRequest value to be

included in the signed SPDU. If this is

omitted, no p2pcdLearningRequest value is

to be included.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

170

9.5.3.2.3 When generated

The primitive is generated in response to SSME-Sec-OutgoingP2pcdInfo.request.

9.5.3.2.4 Effect of receipt

The P2PCD Learning Request is included in the signed SPDU that is being generated.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

171

Annex A

(normative)

Protocol Implementation Conformance Statement (PICS) proforma

A.1 Instructions for completing the PICS proforma

A.1.1 General structure of the PICS proforma

The first parts of the PICS proforma, Implementation identification and Protocol summary, are to be

completed as indicated with the information necessary to identify fully both the supplier and the

implementation.

The main part of the PICS proforma is a fixed questionnaire, divided into subclauses, each containing a

number of individual items. Answers to the questionnaire items are to be provided in the rightmost column,

either by simply marking an answer to indicate a restricted choice (usually Yes or No) or by entering a value

or a set or a range of values. If there are items where two or more choices from a set of possible answers may

apply, all relevant choices are to be marked.

Each item is identified by an item reference in the first column. The second column contains the question to

be answered. The third column contains the reference or references to the material that specifies the item in

the main body of this standard. The remaining columns record the status of each item, i.e., whether support

is mandatory, optional, or conditional, and provide the space for the answers. Marking an item as supported

is to be interpreted as a statement that all relevant requirements of the subclauses and normative annexes,

cited in the References column for the item, are met by the implementation.

A supplier may also provide, or be required to provide, further information, categorized as either Additional

Information or Exception Information. When present, each kind of further information is to be provided in a

further subclause of items labeled A<I> or X<I>, respectively, for cross-referencing purposes, where <I> is

any unambiguous identification for the item (e.g., simply a numeral). There are no other restrictions on its

format or presentation.

A completed PICS proforma, including any Additional Information and Exception Information, is the PICS

for the implementation in question.

NOTE—Where an implementation is capable of being configured in more than one way, a single PICS may be able to

describe all such configurations. However, the supplier has the choice of providing more than one PICS, each covering

some subset of the implementation’s capabilities, if this makes for easier and clearer presentation of the information.

A.1.2 Additional information

Items of Additional Information allow a supplier to provide further information intended to assist in the

interpretation of the PICS. It is not intended or expected that a large quantity of information will be supplied,

and a PICS can be considered complete without any such information. Examples of such Additional

Information might be an outline of the ways in which an (single) implementation can be set up to operate in

a variety of environments and configurations, or information about aspects of the implementation that are

outside the scope of this standard and have a bearing upon the answers to some items.

References to items of Additional Information may be entered next to any answer in the questionnaire, and

may be included in items of Exception Information.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

172

A.1.3 Exception information

It may happen occasionally that a supplier will wish to answer an item with mandatory status (after any

conditions have been applied) in a way that conflicts with the indicated requirement. No preprinted answer

will be found in the Support column for this. Instead, the supplier shall write the missing answer into the

Support column, together with an X<I> reference to an item of Exception Information, and shall provide the

appropriate rationale in the Exception Information item itself.

An implementation for which an Exception Information item is required in this way does not conform to this

standard.

NOTE—A possible reason for the situation described above is that a defect in this standard has been reported, a correction

for which is expected to change the requirement not met by the implementation.

A.1.4 Conditional status

The PICS proforma contains a number of conditional items. These are items for which both the applicability

of the item itself, and its status if it does apply, mandatory or optional, are dependent upon whether or not

certain other items are supported.

A conditional symbol is of the form “<pred>:<S>”, where “<pred>” is a predicate as specified below, and

“<S>” is one of the status symbols C, M, or O.

If the value of the predicate is true, the conditional item is applicable, and its status is given by S, then the

support column is to be completed in the usual way. Otherwise, the conditional item is not relevant.

A predicate is one of the following:

 An item-reference for an item in the PICS proforma: the value of the predicate is true if the item is

marked as supported, and is false otherwise.

 A Boolean expression constructed by combining item-references using the boolean operator OR: The

value of the predicate is true if one or more of the items is marked as supported, and is false otherwise.

For compactness, item-references combined with a comma are considered to be combined with the

OR operator.

 An item-reference or combination of item references as described in the previous two dashed items,

followed by “<rel> <num>”, such that:

 The relationship “<rel>” is “<”, “”, or “>”, indicating “less than”, “equal to”, or “greater than”

<num>.

 The number “<num>” is an integer.

 The predicate is true if the item-reference is true as defined above and the value defined in the

item body matches the numeric relationship indicated by “<rel> <num>”, and the predicate is

false if either the item-reference is not true as defined above or the value defined in the item

body does not match the numeric relationship indicated by “<rel> <num>”. Example: For the

item S1.2.2.5.1.2.1, “Maximum number of rectangularRegions supported”, the Status

“S1.2.2.5.1.2:8:M > 8:O” indicates that if item S1.2.2.5.1.2, “Support a rectangular region”, is

supported, then item S1.2.2.5.1.2.1, “Maximum number of rectangularRegions supported”,

shall have a value of at least 8 and may have a value greater than 8.

A status of C<n> indicates a mutual conditionality such that support of one and one only of the items that

have the same predicate and status C<n> is mandatory.

A status of O<n> indicates a mutual conditionality such that the feature is optional but that support of at least

one of the items that have the same predicate and status O<n> is mandatory.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

173

A status of M indicates that the feature is mandatory.

A status of O indicates that the feature is optional.

A.2 PICS proforma—IEEE Std 1609.215

A.2.1 Identification

Only the first three items are required for all implementations. Other information may be completed as

appropriate in meeting the requirement for full identification.

The terms name and version should be interpreted appropriately to correspond with a supplier’s terminology

(e.g., type, series, model).

Supplier

Contact point for queries about the PICS

Implementation name(s) and version(s)

Other information necessary for full identification, e.g.,

name(s) and version(s) of the machines and/or operating

systems(s), system names

A.2.2 Protocol summary

Identification of protocol standard

IEEE Std 1609.2

Identification of amendments and corrigenda to this PICS

proforma that have been completed as part of this PICS
Amd. : Corr. :

15 Copyright release for PICS proforma: Users of this standard may freely reproduce the PICS proforma in this annex so that it can be
used for its intended purpose and may further publish the completed PICS.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

174

 Amd. : Corr. :

Have any exception items been required? (See A.1.3; the

answer Yes means that the implementation does not

conform to IEEE Std 1609.2)

□Yes □No

Date of statement (dd/mm/yy)

A.2.3 Conformance statement

A.2.3.1 Security services

This presents a list of the security functionality that an implementation may claim to support.

Item Security configuration (top-level) Reference Status Suppor

t

S1. Support secure data service O1 □Yes

□No

S1.1. Secure data exchange entity (SDEE)

identification

4.2.2.1 S1:M □Yes

□No

S1.1.1. Support only one SDEE 4.2.2.1 S1.1:C1 □Yes

□No

S1.1.2. Distinguish between SDEEs 4.2.2.1 S1.1:C1 □Yes

□No

S1.2. Generate secured protocol data unit (SPDU) S1:O2 □Yes

□No

S1.2.1. Create Ieee1609Dot2Data containing unsecured

data

4.2.2.2.2 S1.2:O3 □Yes

□No

S1.2.2. Create Ieee1609Dot2Data containing valid

SignedData

4.2.2.2.3, 5.2,

5.3.1, 5.3.3, 5.3.7,

6.3.4, 6.3.9, 9.3.9.1

S1.2:O3 □Yes

□No

S1.2.2.1. Using a valid HashAlgorithm 6.3.5 S1.2.2:M □Yes

□No

S1.2.2.1.1. Support signing with hash algorithm SHA-256 6.3.5 S1.2.2:O3a □Yes

□No

S1.2.2.1.2. Support signing with hash algorithm SHA-384 6.3.5 S1.2.2:O3a □Yes

□No

S1.2.2.1.3. Support signing with other hash algorithm 6.3.5 S1.2.2:O □Yes

□No

S1.2.2.2. Containing a Signed Data payload 6.3.6 S1.2.2:M □Yes

□No

S1.2.2.2.1. … with payload containing data 6.3.7 S1.2.2.2:O4 □Yes

□No

S1.2.2.2.2. … with payload containing extDataHash 6.3.7 S1.2.2.2: O4 □Yes

□No

S1.2.2.2.3. … with generationTime in the security headers 6.3.9, 6.3.11 S1.2.2.2: O □Yes

□No

S1.2.2.2.4. … with expiryTime in the security headers 6.3.9, 6.3.11 S1.2.2.2: O □Yes

□No

S1.2.2.2.5. … with generationLocation in the security

headers

6.3.9, 6.3.12 S1.2.2.2: O □Yes

□No

S1.2.2.2.6. … with p2pcdLearningRequest in the security

headers

6.3.9, 6.3.26 S1.2.2.2: O □Yes

□No

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

175

Item Security configuration (top-level) Reference Status Suppor

t

S1.2.2.2.7. … with missingCrlIdentifier in the security

headers

6.3.9, 6.3.16 S1.2.2.2: O □Yes

□No

S1.2.2.2.8. … with encryptionKey in the security headers 6.3.9, 6.3.18 S1.2.2.2: O □Yes

□No

S1.2.2.2.8.1. … … with a PublicEncryptionKey 6.3.9, 6.3.18,

6.3.19

S1.2.2.2.8:O5 □Yes

□No

S1.2.2.2.8.2. … … with a SymmetricEncryptionKey 6.3.9, 6.3.18,

6.3.20

S1.2.2.2.8:O5 □Yes

□No

S1.2.2.3. Support a SignerIdentifier 6.3.25 S1.2.2:M □Yes

□No

S1.2.2.3.1. … of type digest 6.3.27 S1.2.2.3:O6 □Yes

□No

S1.2.2.3.2. … of type certificate 6.4.2 S1.2.2.3:O6 □Yes

□No

S1.2.2.3.2.1. … … maximum number of certificates included

in the SignerIdentifier

6.3.25 S1.2.2.3.2

1:M

> 1:O

Enter

number:

()

S1.2.2.4. Support a Signature 6.3.29 S1.2.2:M □Yes

□No

S1.2.2.4.1. … an ecdsa256Signature 6.3.30 S1.2.2.4:O6a □Yes

□No

S1.2.2.4.1.1. … … using NIST p256 6.3.30 S1.2.2.4.1:O7 □Yes

□No

S1.2.2.4.1.2. … … using Brainpool p256r1 6.3.30 S1.2.2.4.1:O7 □Yes

□No

S1.2.2.4.1.3. … … with a x-only r value 6.3.23 S1.2.2.4.1:O8 □Yes

□No

S1.2.2.4.1.4. … … with a compressed r value 6.3.23 S1.2.2.4.1:O8 □Yes

□No

S1.2.2.4.1.5. … … with an uncompressed r value 6.3.23 S1.2.2.4.1:O8 □Yes

□No

S1.2.2.4.2. … an ecdsa384Signature using Brainpool

p384r1

6.3.31 S1.2.2.4:O6a □Yes

□No

S1.2.2.4.2.1. … … with a x-only r value 6.3.23 S1.2.2.4.1:O8 □Yes

□No

S1.2.2.4.2.2. … … with a compressed r value 6.3.23 S1.2.2.4.1:O8 □Yes

□No

S1.2.2.4.2.3. … … with an uncompressed r value 6.3.23 S1.2.2.4.1:O8 □Yes

□No

S1.2.2.5. Determine that certificate used to sign data is

valid (part of a consistent chain, valid at the

current time and location, hasn’t been revoked)

5.2 S1.2.2:M □Yes

□No

S1.2.2.5.1. Determine that the generation location is

consistent with the region in the certificate

5.2.3.2.3, 6.4.17 S1.2.2.5:M □Yes

□No

S1.2.2.5.1.1. Support a circularRegion 6.4.17, 6.4.18 S1.2.2.5.1:O9 □Yes

□No

S1.2.2.5.1.2. Support a rectangularRegion 6.4.17, 6.4.20 S1.2.2.5.1:O9 □Yes

□No

S1.2.2.5.1.2.1. Maximum number of rectangularRegions

supported

6.4.17, 6.4.20 S1.2.2.5.1.2

8:M

> 8:O

Enter

number:

()

S1.2.2.5.1.3. Support a polygonalRegion

6.4.17, 6.4.21 S1.2.2.5.1:O9 □Yes

□No

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

176

Item Security configuration (top-level) Reference Status Suppor

t

S1.2.2.5.1.3.1. Maximum number of points in a

polygonalRegion

6.4.17, 6.4.21 S1.2.2.5.1.3

8:M

> 8:O

Enter

number:

()

S1.2.2.5.1.4. Support identifiedRegion 6.4.17, 6.4.22 S1.2.2.5.1:O9

□Yes

□No

S1.2.2.5.1.4.1. Maximum number of identifiedRegions

supported

6.4.17, 6.4.22 S1.2.2.5.1.4:

8:M

> 8:O

Enter

number:

()

S1.2.2.5.1.4.2. Support IdentifiedRegion of type CountryOnly 6.4.22, 6.4.23 S1.2.2.5.1.4:O10 □Yes

□No

S1.2.2.5.1.4.3. Support IdentifiedRegion of type

CountryAndRegions

6.4.22, 6.4.24 S1.2.2.5.1.4:O10 □Yes

□No

S1.2.2.5.1.4.4. Support IdentifiedRegion of type

CountryAndSubregions

6.4.22, 6.4.25 S1.2.2.5.1.4:O10 □Yes

□No

S1.2.2.5.1.4.5. List of supported IdentifiedRegions16 5.2.3.4, 6.4.22 S1.2.2.5.1.4:M Provide

as

Additio

nal

Informa

tion

S1.2.2.5.2. Determine that the certificate has the proper

appPermissions

6.4.8, 6.4.28 S1.2.2.5: M □Yes

□No

S1.2.2.5.2.1. Maximum number of PsidSsp in the

appPermissions sequence

6.4.8, 6.4.28 S1.2.2.5.2

8:M

> 8:O

Enter

number:

()

S1.2.2.5.3. Maximum supported length of the full chain

(sending)

5.1.2.2 S1.2.2.5:

2:M

>2:O

Enter

number:

()

S1.2.2.6. Determine that key and certificate used to sign

are a valid pair

5.3.7 S1.2.2:M □Yes

□No

S1.2.2.7. Support signing with explicit certificates 6.4.6 S1.2.2.5:O11 □Yes

□No

S1.2.2.8. Support signing with implicit certificates 5.3.2, 6.4.5 S1.2.2.5:O11 □Yes

□No

S1.2.2.9. Generate elliptic curve digital signature

algorithm (ECDSA) keypairs using a high-

quality random number generator

5.3.6 S1.2.2.4.1: M □Yes

□No

S1.2.3. Create Ieee1609Dot2Data containing

EncryptedData

4.2.2.3.2, 5.3.4,

6.3.32

S1.2:O2 □Yes

□No

S1.2.3.1. Generate Elliptic Curve Integrated Encryption

Scheme (ECIES) ephemeral keypairs using a

high-quality random number generator

5.3.4, 5.3.5, 5.3.6 S1.3.3: M □Yes

□No

S1.2.3.2. Maximum number of recipients supported 6.3.32 S1.2.3

8:M

> 8:O

Enter

number:

()

S1.2.3.3. Containing PreSharedKeyRecipientInfo 6.3.33, 6.3.34 S1.2.3.2:O12 □Yes

□No

S1.2.3.3.1. Containing symmRecipientInfo 6.3.33, 6.3.35 S1.2.3.2:O12 □Yes

□No

S1.2.3.3.2. Containing certRecipientInfo 6.3.33, 6.3.36 S1.2.3.2:O12 □Yes

□No

S1.2.3.3.3. Containing signedDataRecipientInfo 6.3.33, 6.3.36 S1.2.3.2:O12 □Yes

□No

16 This list might or might not include an indication of the accuracy of the internal representation of each

identified region.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

177

Item Security configuration (top-level) Reference Status Suppor

t

S1.2.3.3.4. Containing rekRecipientInfo 6.3.33, 6.3.36 S1.2.3.2:O12 □Yes

□No

S1.2.3.4. Support public-key encryption 6.3.38 S1.2.3:O13 □Yes

□No

S1.2.3.4.1. … using ECIES-256 6.3.38 S1.2.3.4:M □Yes

□No

S1.2.3.4.1.1. … … using NIST p256 6.3.38 S1.2.3.4.1:O14 □Yes

□No

S1.2.3.4.1.2. … … using Brainpool p256r1 6.3.38 S1.2.3.4.1:O14 □Yes

□No

S1.2.3.4.1.3. Support encrypting to an uncompressed

encryption key

6.3.18 S1.2.3.4.1:O15 □Yes

□No

S1.2.3.4.1.4. Support encrypting to a compressed encryption

key

6.3.18 S1.2.3.4.1:O15 □Yes

□No

S1.2.3.4.1.5. Support encrypting to an encryption key

included in an explicit cert

6.3.18 S1.2.3.4.1:O16 □Yes

□No

S1.2.3.4.1.6. Support encrypting to an encryption key

included in an implicit cert

6.3.18 S1.2.3.4.1:O16 □Yes

□No

S1.2.3.4.2. … using a different algorithm introduced at a

later date

6.3.39 S1.2.3.4:O □Yes

□No

S1.2.3.5. Support symmetric encryption 6.3.40 S1.2.3:O13 □Yes

□No

S1.2.3.5.1. … using AES-128 5.3.8, 6.3.40 S1.2.3.5:M □Yes

□No

S1.2.3.5.2. … using a different algorithm introduced at a

later date

6.3.36 S1.2.3.5:O □Yes

□No

S1.3. Receive secured protocol data unit (SPDU) S1:O2 □Yes

□No

S1.3.1. Support preprocessing SPDUs 4.2.2.3.1 S1.3.2.3.1, S3.3

S3.4:M

□Yes

□No

S1.3.2. Verify Ieee1609Dot2Data containing Signed-

Data

4.2.2.3.2, 5.2,

5.3.1, 5.3.3, 5.3.7,

6.3.4, 6.3.9

S1.3:O17 □Yes

□No

S1.3.2.1. Using a valid HashAlgorithm S1.3.2:M □Yes

□No

S1.3.2.1.1. Verify signed data using HashAlgorithm SHA-

256

6.3.5 S1.3.2.1:O17a □Yes

□No

S1.3.2.1.2. Verify signed data using HashAlgorithm SHA-

384

6.3.5 S1.3.2.1:O17a □Yes

□No

S1.3.2.1.3. Verify signed data using another HashAlgorithm 6.3.5 S1.3.2.1:O □Yes

□No

S1.3.2.2. Containing a Signed Data payload 6.3.6 S1.3.2:M □Yes

□No

S1.3.2.2.1. … with payload containing data 6.3.7 S1.3.2.2:O18 □Yes

□No

S1.3.2.2.2. … with payload containing extDataHash 6.3.7 S1.3.2.2:O18 □Yes

□No

S1.3.2.2.3. … with generationTime in the security headers 6.3.9, 6.3.11 S1.3.2.2:O □Yes

□No

S1.3.2.2.4. … with expiryTime in the security headers 6.3.9, 6.3.11 S1.3.2.2:O □Yes

□No

S1.3.2.2.5. … with generationLocation in the security

headers

6.3.9, 6.3.12 S1.3.2.2:O □Yes

□No

S1.3.2.2.6. … with missingCertIdentifier in the security

headers

6.3.9, 6.3.26 S1.3.2.2:O □Yes

□No

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

178

Item Security configuration (top-level) Reference Status Suppor

t

S1.3.2.2.7. … with missingCrlIdentifier in the security

headers

6.3.9, 6.3.16 S1.3.2.2:O □Yes

□No

S1.3.2.2.8. … with encryptionKey in the security headers 6.3.9, 6.3.18 S1.3.2.2:O □Yes

□No

S1.3.2.2.8.1. … … with a PublicEncryptionKey 6.3.9, 6.3.18,

6.3.19

S1.3.2.2.8:O19 □Yes

□No

S1.3.2.2.8.2. … … with a SymmetricEncryptionKey 6.3.9, 6.3.18,

6.3.20

S1.3.2.2.8:O19 □Yes

□No

S1.3.2.3. Support a SignerIdentifier 6.3.25 S1.3.2:M □Yes

□No

S1.3.2.3.1. … of type digest 6.3.27 S1.3.2.3:O20 □Yes

□No

S1.3.2.3.2. … of type certificate 6.4.2 S1.3.2.3:O20 □Yes

□No

S1.3.2.3.2.1. … … maximum number of certificates included

in the SignerIdentifier

6.3.25 S1.3.2.3.2

1:M

> 1:O

Enter

number:

()

S1.3.2.4. Support a Signature 6.3.29 S1.3.2:M □Yes

□No

S1.3.2.4.1. … a ecdsa256Signature 6.3.30 S1.3.2.4:)O20a □Yes

□No

S1.3.2.4.1.1. … … using NIST p256 6.3.30 S1.3.2.4.1:O21 □Yes

□No

S1.3.2.4.1.2. … … using Brainpool p256r1 6.3.30 S1.3.2.4.1:O21 □Yes

□No

S1.3.2.4.1.3. … … with a x-only r value 6.3.23 S1.3.2.4.1:O22 □Yes

□No

S1.3.2.4.1.4. … … with a compressed r value 6.3.23 S1.3.2.4.1:O22 □Yes

□No

S1.3.2.4.1.5. … … with a compressed r value and fast

verification

6.3.23 S1.3.2.4.1:O22 □Yes

□No

S1.3.2.4.1.6. … … with a uncompressed r value 6.3.23 S1.3.2.4.1:O22 □Yes

□No

S1.3.2.4.1.7. … … with a uncompressed r value and fast

verification

6.3.23 S1.3.2.4.1:O22 □Yes

□No

S1.3.2.4.2. … an ecdsa384Signature using Brainpool

p384r1

6.3.31 S1.3.2.4:O20a □Yes

□No

S1.3.2.4.2.1. … … with a x-only r value 6.3.23 S1.3.2.4.1:O22 □Yes

□No

S1.3.2.4.2.2. … … with a compressed r value 6.3.23 S1.3.2.4.1:O22 □Yes

□No

S1.3.2.4.2.3. … … with a compressed r value and fast

verification

6.3.23 S1.3.2.4.1:O22 □Yes

□No

S1.3.2.4.2.4. … … with a uncompressed r value 6.3.23 S1.3.2.4.1:O22 □Yes

□No

S1.3.2.4.2.5. … … with a uncompressed r value and fast

verification

6.3.23 S1.3.2.4.1:O22 □Yes

□No

S1.3.2.5. SignedData verification fails if the certificate is

not valid (part of a consistent chain, valid at the

current time and location, hasn’t been revoked)

5.2, 6.4.2 S1.3.2:M □Yes

□No

S1.3.2.5.1. Reject data based on generation location being

inconsistent with certificate

6.4.8, 6.4.17 S1.3.2.5:O □Yes

□No

S1.3.2.5.1.1. … using a circularRegion 6.4.17, 6.4.18 S1.3.2.5.1:O23 □Yes

□No

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

179

Item Security configuration (top-level) Reference Status Suppor

t

S1.3.2.5.1.2. Support a rectangularRegion 6.4.17, 6.4.20 S1.3.2.5.1:O23 □Yes

□No

S1.3.2.5.1.3. Maximum number of rectangularRegions

supported

6.4.17, 6.4.20 S1.3.2.5.1.2

8:M

> 8:O

Enter

number:

()

S1.3.2.5.1.4. Support a polygonalRegion

6.4.17, 6.4.21 S1.3.2.5.1:O23 □Yes

□No

S1.3.2.5.1.5. Maximum number of points in a

polygonalRegion

6.4.17, 6.4.21 S1.3.2.5.1.4

8:M

> 8:O

Enter

number:

()

S1.3.2.5.1.6. Support identifiedRegion 6.4.17, 6.4.22 S1.3.2.5.1

8:M

> 8:O

Enter

number:

()

S1.3.2.5.1.6.1. Maximum number of identifiedRegions

supported

6.4.17, 6.4.22 S1.3.2.5.1.6:

8:M

> 8:O

Enter

number:

()

S1.3.2.5.1.6.2. Support IdentifiedRegion of type CountryOnly 6.4.22, 6.4.23 S1.3.2.5.1.6:O24 □Yes

□No

S1.3.2.5.1.6.3. Support IdentifiedRegion of type

CountryAndRegions

6.4.22, 6.4.24 S1.3.2.5.1.6:O24 □Yes

□No

S1.3.2.5.1.6.4. Support IdentifiedRegion of type

CountryAndSubregions

6.4.22, 6.4.25 S1.3.2.5.1.6:O24 □Yes

□No

S1.3.2.5.1.6.5. List of supported IdentifiedRegions and the

accuracy of each

5.2.3.4, 6.4.22 S1.2.2.5.1.4:M Provide

as

Additio

nal

Informa

tion

S1.3.2.5.2. Reject data if the certificate does not have the

proper appPermissions

6.4.8, 6.4.28 S1.3.2.5:M □Yes

□No

S1.3.2.5.3. Maximum number of PsidSsp in the

appPermissions sequence

6.4.8, 6.4.28 S1.3.2.5

8:O

> 8:O

Enter

number:

()

S1.3.2.5.4. Determine that the assuranceLevel is an

acceptable level

6.4.8, 6.4.27 S1.3.2.5:O □Yes

□No

S1.3.2.5.5. Maximum supported length of the full chain

(receiving)

5.1.2.2 S1.2.2.5:

2:M

>2:O

Enter

number:

()

S1.3.2.6. Support verifying SPDUs signed with explicit

authorization certificates

6.4.5 S1.3.2:O25 □Yes

□No

S1.3.2.7. Support verifying SPDUs signed with implicit

authorization certificates

5.3.2, 6.4.5 S1.3.2:O25 □Yes

□No

S1.3.2.8. Support explicit certificate authority (CA)

certificates

6.4.2, 6.4.6 S1.3.2:M □Yes

□No

S1.3.2.9. Support receiving implicit CA certificates 6.4.2, 6.4.5 S1.3.2:O □Yes

□No

S1.3.2.10. SignedData verification fails in the following

circumstances:

6.3.4 S1.3.2:M □Yes

□No

S1.3.2.10.1. … SPDU-Parsing: Invalid Input 6.3.4 S1.3.2.10:M □Yes

□No

S1.3.2.10.2. … SPDU-Parsing: Unspported critical

information field

6 S1.3.2.10:M □Yes

□No

S1.3.2.10.3. … SPDU-Parsing: Certificate not found 4.3, 6.3.13, 6.3.14,

6.3.15

S1.3.2.10:M □Yes

□No

S1.3.2.10.4. … SPDU-Parsing:Generation time not available 4.3, 6.3.13, 6.3.14,

6.3.15

S1.3.2.10:M □Yes

□No

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

180

Item Security configuration (top-level) Reference Status Suppor

t

S1.3.2.10.5. … SPDU-Parsing:Generation location not

available

4.3, 6.3.13, 6.3.14,

6.3.15

S1.3.2.10:M □Yes

□No

S1.3.2.10.6. … SPDU-Certificate-Chain: Not enough

information to construct chain

5.1.2 S1.3.2.10:M □Yes

□No

S1.3.2.10.7. … SPDU-Certificate-Chain: Chain ended at

untrusted root

5.1.2 S1.3.2.10:M □Yes

□No

S1.3.2.10.8. … SPDU-Certificate-Chain: Chain was too long

for implementation

5.1.2 S1.3.2.10:M □Yes

□No

S1.3.2.10.9. … SPDU-Certificate-Chain: Certificate revoked 5.1.2 S1.3.2.10:M □Yes

□No

S1.3.2.10.10. … SPDU-Certificate-Chain: Overdue CRL 5.1.2 S1.3.2.10:M □Yes

□No

S1.3.2.10.11. … SPDU-Certificate-Chain: Inconsistent expiry

times

5.1.2 S1.3.2.10:M □Yes

□No

S1.3.2.10.12. … SPDU-Certificate-Chain: Inconsistent start

times

5.1.2 S1.3.2.10:M □Yes

□No

S1.3.2.10.13. … SPDU-Certificate-Chain: Inconsistent chain

permissions

5.1.2 S1.3.2.10:M □Yes

□No

S1.3.2.10.14. … SPDU-Crypto: Verification failure 5.3.1 S1.3.2.10:M □Yes

□No

S1.3.2.10.15. … SPDU-Consistency: Future certificate at

generation time

5.2.3 S1.3.2.10:M □Yes

□No

S1.3.2.10.16. … SPDU-Consistency: Expired certificate at

generation time

5.2.3 S1.3.2.10:M □Yes

□No

S1.3.2.10.17. … SPDU-Consistency: Expiry date too early 5.2.3 S1.3.2.10:M □Yes

□No

S1.3.2.10.18. … SPDU-Consistency: Expiry date too late 5.2.3 S1.3.2.10:M □Yes

□No

S1.3.2.10.19. … SPDU-Consistency: Generation location

outside validity region

5.2.3 S1.3.2.10:M □Yes

□No

S1.3.2.10.20. … SPDU-Consistency: Unauthorized PSID 5.2.3 S1.3.2.10:M □Yes

□No

S1.3.2.10.21. … SPDU-Internal-Consistency: Expiry time

before generation time

6.4.8, 6.4.14, 5.2.3 S1.3.2.10:M □Yes

□No

S1.3.2.10.22. … SPDU-Internal-Consistency: extDataHash

doesn’t match

5.2.3 S1.3.2.10:M □Yes

□No

S1.3.2.10.23. … SPDU-Local-Consistency: PSIDs don’t

match

5.2.3 S1.3.2.10:O □Yes

□No

S1.3.2.10.24. … SPDU-Local-Consistency: Chain was too

long for SDEE

5.2.3 S1.3.2.10:M □Yes

□No

S1.3.2.10.25. … SPDU-Relevance: SPDU Too Old 5.2.4 S1.3.2.10:O □Yes

□No

S1.3.2.10.26. … SPDU-Relevance: Future SPDU 5.2.4 S1.3.2.10:O □Yes

□No

S1.3.2.10.27. … SPDU-Relevance: Expired SPDU 5.2.4 S1.3.2.10:O □Yes

□No

S1.3.2.10.28. … SPDU-Relevance: SPDU Too Distant 5.2.4 S1.3.2.10:O □Yes

□No

S1.3.2.10.29. … SPDU-Relevance: Replayed SPDU 5.2.4 S1.3.2.10:O □Yes

□No

S1.3.3. Decrypt Ieee1609Dot2Data containing

EncryptedData

4.2.2.3.3, 5.3.5,

6.3.32

S1.3:O17 □Yes

□No

S1.3.3.1. Generate ECIES keypairs using a high-quality

random number generator

5.3.4, 5.3.5, 5.3.6 S1.3.3: M □Yes

□No

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

181

Item Security configuration (top-level) Reference Status Suppor

t

S1.3.3.2. Maximum number of RecipientInfos supported

in an incoming EncryptedData

6.3.32 S1.3.3:

8:M

> 8:O

Enter

number:

()

S1.3.3.2.1. Containing symmRecipientInfo 6.3.33 S1.3.3.2:O26 □Yes

□No

S1.3.3.2.2. Containing certRecipientInfo 6.3.33 S1.3.3.2:O26 □Yes

□No

S1.3.3.2.3. Containing signedDataRecipientInfo 6.3.33 S1.3.3.2:O26 □Yes

□No

S1.3.3.2.4. Containing rekRecipientInfo 6.3.33 S1.3.3.2:O26 □Yes

□No

S1.3.3.2.5. Containing pskRecipientInfo 6.3.33, 6.3.36 S1.3.3.2:O26 □Yes

□No

S1.3.3.3. Support decrypting using a public-key algorithm 6.3.38 S1.3.3:O27 □Yes

□No

S1.3.3.3.1. … using ECIES-256 6.3.38 S1.3.3.3:M □Yes

□No

S1.3.3.3.1.1. … … using NIST p256 6.3.38 S1.3.3.3:O28 □Yes

□No

S1.3.3.3.1.2. … … using Brainpool p256r1 6.3.38 S1.3.3.3:O28 □Yes

□No

S1.3.3.3.2. … using a different algorithm introduced at a

later date

6.3.39 S1.3.3.3:O □Yes

□No

S1.3.3.4. Support decrypting using a symmetric algorithm 6.3.40 S1.3.3:O27 □Yes

□No

S1.3.3.4.1. ... using AES-128 6.3.40 S1.3.3.4:M □Yes

□No

S1.3.3.4.2. … using a different algorithm introduced at a

later date

6.3.36 S1.3.3.4:O □Yes

□No

A.2.3.2 Certificate revocation list (CRL) verification entity

Item Security configuration (top-level) Reference Status Suppport

S2. Support CRL Validation Entity 7 O1 □Yes □No

S2.1. Correctly verify received CRL 7.4 S2:M □Yes □No

S2.1.1. …using hash ID-based revocation 5.1.3.5 S2.1:O29 □Yes □No

S2.1.1.1. … of type fullHashCrl 7.3.2 S2.1.1:M □Yes □No

S2.1.1.2. … of type deltaHashCrl 7.3.2 O □Yes □No

S2.1.2. … using linkage-based revocation 5.1.3.4 S2.1:O29 □Yes □No

S2.1.2.1. … of type fullLinkedCrl 7.3.2 S2.1.2:M □Yes □No

S2.1.2.2. … of type deltaLinkedCrl 7.3.2 O □Yes □No

S2.1.2.3. … containing individual linkage values 7.3.6 S2.1.2:M □Yes □No

S2.1.2.4. … containing group linkage values 7.3.6 O □Yes □No

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

182

A.2.3.3 Peer-to-peer certificate distribution (P2PCD) functionality

Item Security configuration (top-level) Reference Status Support

S3. Support P2PCD 8 O □Yes □No

S3.1. Number of supported SDEEs 8.2.6 S3.3:

1:O

> 1:O

Enter number:

()

S3.2. Support out-of-band P2PCD operations 8 S3:O30 □Yes □No

S3.3. Support SSME and SDS operations for out-of-band

P2PCD in the requester role

8.2.4.1.1 S3.2:O □Yes □No

S3.3.1. Under at least one condition, trigger request processing

on receiving a trigger SPDU

8.2.4.1.1

S3.3:M Enter

description of

at least one

condition under

which request

processing is

triggered ()

S3.3.2. Do not trigger request processing on receiving a trigger

SPDU for which a request is already active

8.2.4.1.1 S3.3:M □Yes □No

S3.3.3. Number of simultaneously active P2PCD learning

requests

8.2.4.1.1,

8.2.6

S3.3:

1:O

> 1:O

Enter number:

()

S3.3.4. When request processing is triggered, include a P2PCD

learning request in the next SPDU for the trigger SDEE

except in the following exception cases

8.2.4.1.1 S3.3: M □Yes □No

S3.3.4.1. Do not include a P2PCD learning request if a learning

request for the same certificate has been received

within p2pcd_observedRequestTimeout

8.2.4.1.1 S3.3.4:O □Yes □No

S3.3.4.2. Only include one P2PCD learning request no matter

how many learning requests have been triggered

8.2.4.1.1 S3.3.4:

M

□Yes □No

S3.3.5. Receive notifications from a P2PCDE that a P2PCD

learning response has been received and use those to

update the list of known certificates.

8.2.4.1.1 S3.3: M □Yes □No

S3.4. Support SSME and SDS operations for out-of-band

P2PCD in the responder role

8.2.4.2.2 S3:O30 □Yes □No

S3.4.1. Trigger response processing on receiving a P2PCD

learning request

8.2.4.2.2 S3.4:M □Yes □No

S3.4.2. Number of simultaneously active P2PCD learning

responses

8.2.4.2.2,

8.2.6

S3.4:

1:O

> 1:O

Enter number:

()

S3.4.3. Do not trigger response processing if less than

p2pcd_responseActiveTimeout has passed

since last triggered

8.2.4.2.2 S3.4: M □Yes □No

S3.4.4. Trigger sending response after random backoff time

unless threshold number of responses have been

observed

8.2.4.2.2 S3.4: M □Yes □No

S3.4.5. Increment number of responses observed based on

input from P2PCDE

8.2.4.2.2 S3.4: M □Yes □No

S3.5. Support P2PCDE operations for P2PCD 8.2.4.2.2 S3:O30 □Yes □No

S3.5.1. Receive responses and provide to SSME 8.2.4.1.1,

8.2.4.2.2,

8.3.1

S3.5: M □Yes □No

S3.5.2. Send responses when triggered by SSME 8.2.4.2.2,

8.3.1

S3.5: O □Yes □No

S3.5.3. Send responses over WSMP 8.2.4.2.2 S3.5.2:

M

□Yes □No

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

183

S3.6. Support inline P2PCD operations 8 S3:O30 □Yes □No

S3.6.1. Support inline P2PCD requester operations 8.2.4.1.2 S3.6:O □Yes □No

S3.6.2. Support inline P2PCD responder operations 8.2.4.2.3 S3.6:M □Yes □No

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

184

Annex B

(normative)

ASN.1 modules

B.1 General

This Annex presents the ASN.1 structures from the body of the document, formatted as a series of ASN.1

modules. These modules have been compiled with commercial compilers and have compiled without

warnings.

In the event of a conflict between the ASN.1 in this annex and the ASN.1 in the main body of this document,

the ASN.1 in the main body of this document takes precedence.

B.2 1609.2 security services

B.2.1 1609.2 schema

IEEE1609dot2 {iso(1) identified-organization(3) ieee(111)

standards-association-numbered-series-standards(2) wave-stds(1609)

dot2(2) base(1) schema(1) major-version-2(2)}

-- Minor version: 1

--

**

--

-- IEEE P1609.2 Data Types

--

--

**

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS

 CrlSeries,

 EccP256CurvePoint,

 EncryptedDataEncryptionKey,

 EncryptionKey,

 GeographicRegion,

 GroupLinkageValue,

 HashAlgorithm,

 HashedId3,

 HashedId8,

 HashedId32,

 Hostname,

 IValue,

 LinkageValue,

 Opaque,

 Psid,

 PsidSsp,

 PsidSspRange,

 PublicEncryptionKey,

 PublicVerificationKey,

 SequenceOfHashedId3,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

185

 SequenceOfPsidSsp,

 SequenceOfPsidSspRange,

 ServiceSpecificPermissions,

 Signature,

 SubjectAssurance,

 SymmetricEncryptionKey,

 ThreeDLocation,

 Time64,

 Uint3,

 Uint8,

 Uint16,

 Uint32,

 ValidityPeriod

FROM IEEE1609dot2BaseTypes {iso(1) identified-organization(3) ieee(111)

 standards-association-numbered-series-standards(2) wave-stds(1609)

 dot2(2) base(1) base-types(2) major-version-2(2)}

;

--

--***

--

-- Structures for describing secured data

--

--***

-- this structure belongs later in the file but putting it here avoids

-- compiler errors with certain tools

SignedDataPayload ::= SEQUENCE {

 data Ieee1609Dot2Data OPTIONAL,

 extDataHash HashedData OPTIONAL,

 ...

}

 (WITH COMPONENTS {..., data PRESENT} |

 WITH COMPONENTS {..., extDataHash PRESENT})

Ieee1609Dot2Data ::= SEQUENCE {

 protocolVersion Uint8(3),

 content Ieee1609Dot2Content

}

Ieee1609Dot2Content ::= CHOICE {

 unsecuredData Opaque,

 signedData SignedData,

 encryptedData EncryptedData,

 signedCertificateRequest Opaque,

 ...

}

SignedData ::= SEQUENCE {

 hashId HashAlgorithm,

 tbsData ToBeSignedData,

 signer SignerIdentifier,

 signature Signature

}

SignerIdentifier ::= CHOICE {

 digest HashedId8,

 certificate SequenceOfCertificate,

 self NULL,

 ...

}

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

186

ToBeSignedData ::= SEQUENCE {

 payload SignedDataPayload,

 headerInfo HeaderInfo

}

HashedData::= CHOICE {

 sha256HashedData OCTET STRING (SIZE(32)),

 ...

}

HeaderInfo ::= SEQUENCE {

 psid Psid,

 generationTime Time64 OPTIONAL,

 expiryTime Time64 OPTIONAL,

 generationLocation ThreeDLocation OPTIONAL,

 p2pcdLearningRequest HashedId3 OPTIONAL,

 missingCrlIdentifier MissingCrlIdentifier OPTIONAL,

 encryptionKey EncryptionKey OPTIONAL,

 ...,

 inlineP2pcdRequest SequenceOfHashedId3 OPTIONAL,

 requestedCertificate Certificate OPTIONAL,

}

MissingCrlIdentifier ::= SEQUENCE {

 cracaId HashedId3,

 crlSeries CrlSeries,

 ...

}

Countersignature ::= Ieee1609Dot2Data (WITH COMPONENTS {...,

 content (WITH COMPONENTS {...,

 signedData (WITH COMPONENTS {...,

 tbsData (WITH COMPONENTS {...,

 payload (WITH COMPONENTS {...,

 data ABSENT,

 extDataHash PRESENT

 }),

 headerInfo(WITH COMPONENTS {...,

 generationTime PRESENT,

 expiryTime ABSENT,

 generationLocation ABSENT,

 p2pcdLearningRequest ABSENT,

 missingCrlIdentifier ABSENT,

 encryptionKey ABSENT

 })

 })

 })

 })

})

--**

--

-- Structures for describing encrypted data

--

--**

EncryptedData ::= SEQUENCE {

 recipients SequenceOfRecipientInfo,

 ciphertext SymmetricCiphertext

}

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

187

RecipientInfo ::= CHOICE {

 pskRecipInfo PreSharedKeyRecipientInfo,

 symmRecipInfo SymmRecipientInfo,

 certRecipInfo PKRecipientInfo,

 signedDataRecipInfo PKRecipientInfo,

 rekRecipInfo PKRecipientInfo

}

SequenceOfRecipientInfo ::= SEQUENCE OF RecipientInfo

PreSharedKeyRecipientInfo ::= HashedId8

SymmRecipientInfo ::= SEQUENCE {

 recipientId HashedId8,

 encKey SymmetricCiphertext

}

PKRecipientInfo ::= SEQUENCE {

 recipientId HashedId8,

 encKey EncryptedDataEncryptionKey

}

EncryptedDataEncryptionKey ::= CHOICE {

 eciesNistP256 EciesP256EncryptedKey,

 eciesBrainpoolP256r1 EciesP256EncryptedKey,

 ...

}

SymmetricCiphertext ::= CHOICE {

 aes128ccm Aes128CcmCiphertext,

 ...

}

Aes128CcmCiphertext ::= SEQUENCE {

 nonce OCTET STRING (SIZE (12)),

 ccmCiphertext Opaque -- 16 bytes longer than plaintext

}

--**

--

-- Certificates and other security management data structures

--

--**

-- Certificates are implicit (type = implicit, toBeSigned includes

-- reconstruction value, signature absent) or explicit (type = explicit,

-- toBeSigned includes verification key, signature present).

Certificate ::= CertificateBase (ImplicitCertificate | ExplicitCertificate)

SequenceOfCertificate ::= SEQUENCE OF Certificate

CertificateBase ::= SEQUENCE {

 version Uint8(3),

 type CertificateType,

 issuer IssuerIdentifier,

 toBeSigned ToBeSignedCertificate,

 signature Signature OPTIONAL

}

CertificateType ::= ENUMERATED {

 explicit,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

188

 implicit,

 ...

}

ImplicitCertificate ::= CertificateBase (WITH COMPONENTS {...,

 type(implicit),

 toBeSigned(WITH COMPONENTS {...,

 verifyKeyIndicator(WITH COMPONENTS {reconstructionValue})

 }),

 signature ABSENT

 })

ExplicitCertificate ::= CertificateBase (WITH COMPONENTS {...,

 type(explicit),

 toBeSigned(WITH COMPONENTS {...,

 verifyKeyIndicator(WITH COMPONENTS {verificationKey})

 }),

 signature PRESENT

 })

IssuerIdentifier ::= CHOICE {

 sha256AndDigest HashedId8,

 self HashAlgorithm,

 ...,

 sha384AndDigest HashedId8

}

ToBeSignedCertificate ::= SEQUENCE {

 id CertificateId,

 cracaId HashedId3,

 crlSeries CrlSeries,

 validityPeriod ValidityPeriod,

 region GeographicRegion OPTIONAL,

 assuranceLevel SubjectAssurance OPTIONAL,

 appPermissions SequenceOfPsidSsp OPTIONAL,

 certIssuePermissions SequenceOfPsidGroupPermissions OPTIONAL,

 certRequestPermissions SequenceOfPsidGroupPermissions OPTIONAL,

 canRequestRollover NULL OPTIONAL,

 encryptionKey PublicEncryptionKey OPTIONAL,

 verifyKeyIndicator VerificationKeyIndicator,

 ...

}

(WITH COMPONENTS { ..., appPermissions PRESENT} |

 WITH COMPONENTS { ..., certIssuePermissions PRESENT} |

 WITH COMPONENTS { ..., certRequestPermissions PRESENT})

CertificateId ::= CHOICE {

 linkageData LinkageData,

 name Hostname,

 binaryId OCTET STRING(SIZE(1..64)),

 none NULL,

 ...

}

LinkageData ::= SEQUENCE {

 iCert IValue,

 linkage-value LinkageValue,

 group-linkage-value GroupLinkageValue OPTIONAL

}

EndEntityType ::= BIT STRING {app (0), enroll (1) } (SIZE (8)) (ALL EXCEPT {})

PsidGroupPermissions ::= SEQUENCE {

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

189

 subjectPermissions SubjectPermissions,

 minChainLength INTEGER DEFAULT 1,

 chainLengthRange INTEGER DEFAULT 0,

 eeType EndEntityType DEFAULT {app}

}

SequenceOfPsidGroupPermissions ::= SEQUENCE OF PsidGroupPermissions

SubjectPermissions ::= CHOICE {

 explicit SequenceOfPsidSspRange,

 all NULL,

 ...

}

VerificationKeyIndicator ::= CHOICE {

 verificationKey PublicVerificationKey,

 reconstructionValue EccP256CurvePoint,

 ...

}

END

B.2.2 1609.2 base types

IEEE1609dot2BaseTypes {iso(1) identified-organization(3) ieee(111)

standards-association-numbered-series-standards(2) wave-stds(1609)

dot2(2) base(1) base-types(2) major-version-2(2)}

-- Minor version: 1

--

--**

-- IEEE P1609.2 Base Data Types

--

--**

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

EXPORTS ALL;

-- --

--

-- Integers

--

-- --

Uint3 ::= INTEGER (0..7) -- (hex) 07

Uint8 ::= INTEGER (0..255) -- (hex) ff

Uint16 ::= INTEGER (0..65535) -- (hex) ff ff

Uint32 ::= INTEGER (0..4294967295)--<LONGLONG>-- -- (hex) ff ff ff ff

Uint64 ::= INTEGER (0..18446744073709551615) -- (hex) ff ff ff ff ff ff ff ff

SequenceOfUint8 ::= SEQUENCE OF Uint8

SequenceOfUint16 ::= SEQUENCE OF Uint16

-- --

--

-- OCTET STRING types

--

-- --

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

190

Opaque ::= OCTET STRING

HashedId32 ::= OCTET STRING (SIZE(32))

HashedId10 ::= OCTET STRING (SIZE(10))

HashedId8 ::= OCTET STRING (SIZE(8))

HashedId4 ::= OCTET STRING (SIZE(4))

HashedId3 ::= OCTET STRING (SIZE(3))

SequenceOfHashedId3 ::= SEQUENCE OF HashedId3

-- --

--

-- Time

--

-- --

Time32 ::= Uint32

Time64 ::= Uint64

ValidityPeriod ::= SEQUENCE {

 start Time32,

 duration Duration

}

Duration ::= CHOICE {
 microseconds Uint16,

 milliseconds Uint16,

 seconds Uint16,

 minutes Uint16,

 hours Uint16,

 sixtyHours Uint16,

 years Uint16

}

-- --

--

-- Location

--

-- --

GeographicRegion ::= CHOICE {

 circularRegion CircularRegion,

 rectangularRegion SequenceOfRectangularRegion,

 polygonalRegion PolygonalRegion,

 identifiedRegion SequenceOfIdentifiedRegion,

 ...

}

CircularRegion ::= SEQUENCE {

 center TwoDLocation,

 radius Uint16

}

RectangularRegion ::= SEQUENCE {

 northWest TwoDLocation,

 southEast TwoDLocation

}

SequenceOfRectangularRegion ::= SEQUENCE OF RectangularRegion

PolygonalRegion ::= SEQUENCE SIZE(3..MAX) OF TwoDLocation

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

191

TwoDLocation ::= SEQUENCE {

 latitude Latitude,

 longitude Longitude

}

IdentifiedRegion ::= CHOICE {

 countryOnly CountryOnly,

 countryAndRegions CountryAndRegions,

 countryAndSubregions CountryAndSubregions,

 ...

}

SequenceOfIdentifiedRegion ::= SEQUENCE OF IdentifiedRegion

CountryOnly ::= Uint16

CountryAndRegions ::= SEQUENCE {

 countryOnly CountryOnly,

 regions SequenceOfUint8

}

CountryAndSubregions ::= SEQUENCE {

 country CountryOnly,

 regionAndSubregions SequenceOfRegionAndSubregions

}

RegionAndSubregions ::= SEQUENCE {

 region Uint8,

 subregions SequenceOfUint16

}

SequenceOfRegionAndSubregions ::= SEQUENCE OF RegionAndSubregions

ThreeDLocation ::= SEQUENCE {

 latitude Latitude,

 longitude Longitude,

 elevation Elevation

}

Latitude ::= NinetyDegreeInt

Longitude ::= OneEightyDegreeInt

Elevation ::= ElevInt

NinetyDegreeInt ::= INTEGER {

 min (-900000000),

 max (900000000),

 unknown (900000001)

} (-900000000..900000001)

KnownLatitude ::= NinetyDegreeInt (min..max) -- Minus 90deg to +90deg in

microdegree intervals

UnknownLatitude ::= NinetyDegreeInt (unknown)

OneEightyDegreeInt ::= INTEGER {

 min (-1799999999),

 max (1800000000),

 unknown (1800000001)

} (-1799999999..1800000001)

KnownLongitude ::= OneEightyDegreeInt (min..max)

UnknownLongitude ::= OneEightyDegreeInt (unknown)

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

192

ElevInt ::= Uint16 -- Range is from -4096 to 61439 in units of one-tenth of a

meter

-- --

--

-- Crypto

--

-- --

Signature ::= CHOICE {

 ecdsaNistP256Signature EcdsaP256Signature,

 ecdsaBrainpoolP256r1Signature EcdsaP256Signature,

 ...,

 ecdsaBrainpoolP384r1Signature EcdsaP384Signature,

}

EcdsaP256Signature ::= SEQUENCE {

 rSig EccP256CurvePoint,

 sSig OCTET STRING (SIZE (32))

}

EcdsaP384Signature ::= SEQUENCE {

 rSig EccP384CurvePoint,

 sSig OCTET STRING (SIZE (48))

}

EccP256CurvePoint ::= CHOICE {

 x-only OCTET STRING (SIZE (32)),

 fill NULL, -- consistency with 1363 / X9.62

 compressed-y-0 OCTET STRING (SIZE (32)),

 compressed-y-1 OCTET STRING (SIZE (32)),

 uncompressed SEQUENCE {

 x OCTET STRING (SIZE (32)),

 y OCTET STRING (SIZE (32))

 }

}

 EccP384CurvePoint::= CHOICE {

 x-only OCTET STRING (SIZE (48)),

 fill NULL, -- consistency w 1363 / X9.62

 compressed-y-0 OCTET STRING (SIZE (48)),

 compressed-y-1 OCTET STRING (SIZE (48)),

 uncompressed SEQUENCE {

 x OCTET STRING (SIZE (48)),

 y OCTET STRING (SIZE (48))

 }

 }

SymmAlgorithm ::= ENUMERATED {

 aes128Ccm,

 ...

}

HashAlgorithm ::= ENUMERATED {

 sha256,

 ...,

 sha384

}

EciesP256EncryptedKey ::= SEQUENCE {

 v EccP256CurvePoint,

 c OCTET STRING (SIZE (16)),

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

193

 t OCTET STRING (SIZE (16))

}

EncryptionKey ::= CHOICE {

 public PublicEncryptionKey,

 symmetric SymmetricEncryptionKey

}

PublicEncryptionKey ::= SEQUENCE {

 supportedSymmAlg SymmAlgorithm,

 publicKey BasePublicEncryptionKey

}

BasePublicEncryptionKey ::= CHOICE {

 eciesNistP256 EccP256CurvePoint,

 eciesBrainpoolP256r1 EccP256CurvePoint,

 ...

}

PublicVerificationKey ::= CHOICE {

 ecdsaNistP256 EccP256CurvePoint,

 ecdsaBrainpoolP256r1 EccP256CurvePoint,
 ...,

 ecdsaBrainpoolP384r1 EccP384CurvePoint

}

SymmetricEncryptionKey ::= CHOICE {

 aes128Ccm OCTET STRING(SIZE(16)),

 ...

}

-- --

--

-- PSID / ITS-AID

--

-- --

PsidSsp ::= SEQUENCE {

 psid Psid,

 ssp ServiceSpecificPermissions OPTIONAL

}

SequenceOfPsidSsp ::= SEQUENCE OF PsidSsp

Psid ::= INTEGER (0..MAX)

SequenceOfPsid ::= SEQUENCE OF Psid

ServiceSpecificPermissions ::= CHOICE {

 opaque OCTET STRING (SIZE(0..MAX)),

 ...,

 bitmapSsp BitmapSsp,

}

BitmapSsp ::= OCTET STRING (SIZE(0..31))

SspValue ::= OCTET STRING (SIZE(0..31))

SspBitmask ::= OCTET STRING (SIZE(0..31))

PsidSspRange ::= SEQUENCE {

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

194

 psid Psid,

 sspRange SspRange OPTIONAL

}

SequenceOfPsidSspRange ::= SEQUENCE OF PsidSspRange

SspRange ::= CHOICE {

 opaque SequenceOfOctetString,

 all NULL,

 ... ,

 bitmapSspRange BitmapSspRange,

}

BitmapSspRange ::= SEQUENCE {

 sspValue OCTET STRING (SIZE(1..32)),

 sspBitmask OCTET STRING (SIZE(1..32)),

}

SequenceOfOctetString ::= SEQUENCE (SIZE (0..MAX)) OF

 OCTET STRING (SIZE(0..MAX))

-- --

--

-- Goes in certs

--

-- --

SubjectAssurance ::= OCTET STRING (SIZE(1))

CrlSeries ::= Uint16

-- --

--

-- Pseudonym Linkage

--

-- --

IValue ::= Uint16

Hostname ::= UTF8String (SIZE(0..255))

LinkageValue ::= OCTET STRING (SIZE(9))

GroupLinkageValue ::= SEQUENCE {

 jValue OCTET STRING (SIZE(4)),

 value OCTET STRING (SIZE(9))

}

LaId ::= OCTET STRING (SIZE(2))

LinkageSeed ::= OCTET STRING (SIZE(16))

END

B.3 Certificate revocation list (CRL)

B.3.1 Certificate revocation list: Base types

IEEE1609dot2CrlBaseTypes {iso(1) identified-organization(3) ieee(111)

standards-association-numbered-series-standards(2) wave-stds(1609)

dot2(2) crl(3) base-types(2) major-version-2(2)}

-- Minor version: 1

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

195

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS

 CrlSeries,

 GeographicRegion,

 HashedId8,

 HashedId10,

 IValue,

 LaId,

 LinkageSeed,

 Opaque,

 Psid,

 Signature,

 Time32,

 Uint3,

 Uint8,

 Uint16,

 Uint32,

 ValidityPeriod

FROM IEEE1609dot2BaseTypes {iso(1) identified-organization(3) ieee(111)

 standards-association-numbered-series-standards(2) wave-stds(1609)

 dot2(2) base(1) base-types(2) major-version-2(2)}

;

--

--

-- CRL contents

--

--

CrlContents ::= SEQUENCE {

 version Uint8 (1),

 crlSeries CrlSeries,

 crlCraca HashedId8,

 issueDate Time32,

 nextCrl Time32,

 priorityInfo CrlPriorityInfo,

 typeSpecific CHOICE {

 fullHashCrl ToBeSignedHashIdCrl,

 deltaHashCrl ToBeSignedHashIdCrl,

 fullLinkedCrl ToBeSignedLinkageValueCrl,

 deltaLinkedCrl ToBeSignedLinkageValueCrl,

 ...

 }

}

CrlPriorityInfo ::= SEQUENCE {

 priority Uint8 OPTIONAL,

 ...

}

ToBeSignedHashIdCrl ::= SEQUENCE {

 crlSerial Uint32,

 entries SequenceOfHashBasedRevocationInfo,

 ...

}

HashBasedRevocationInfo ::= SEQUENCE {

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

196

 id HashedId10,

 expiry Time32

}

SequenceOfHashBasedRevocationInfo ::=

 SEQUENCE OF HashBasedRevocationInfo

ToBeSignedLinkageValueCrl ::= SEQUENCE {

 iRev IValue,

 indexWithinI Uint8,

 individual SequenceOfJMaxGroup OPTIONAL,

 groups SequenceOfGroupCrlEntry OPTIONAL,

 ...

}

(WITH COMPONENTS {..., individual PRESENT} |

 WITH COMPONENTS {..., groups PRESENT})

JMaxGroup ::= SEQUENCE {

 jmax Uint8,

 contents SequenceOfLAGroup

}

SequenceOfJMaxGroup ::= SEQUENCE OF JMaxGroup

LAGroup ::= SEQUENCE {

 la1Id LaId,

 la2Id LaId,

 contents SequenceOfIMaxGroup,

 ...

}

SequenceOfLAGroup ::= SEQUENCE OF LAGroup

IMaxGroup ::= SEQUENCE {

 iMax Uint16,

 contents SequenceOfIndividualRevocation,

 ...

}

SequenceOfIMaxGroup ::= SEQUENCE OF IMaxGroup

IndividualRevocation ::= SEQUENCE {

 linkage-seed1 LinkageSeed,

 linkage-seed2 LinkageSeed,

 ...

}

SequenceOfIndividualRevocation ::= SEQUENCE OF IndividualRevocation

GroupCrlEntry ::= SEQUENCE {

 iMax Uint16,

 la1Id LaId,

 linkageSeed1 LinkageSeed,

 la2Id LaId,

 linkageSeed2 LinkageSeed,

 ...

}

SequenceOfGroupCrlEntry ::= SEQUENCE OF GroupCrlEntry

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

197

END

B.3.2 CRL: Security envelope

IEEE1609dot2Crl {iso(1) identified-organization(3) ieee(111)

standards-association-numbered-series-standards(2) wave-stds(1609)

dot2(2) crl(3) protocol(1) major-version-2(2) }

-- Minor version: 1

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS

 Ieee1609Dot2Data

FROM IEEE1609dot2 {iso(1) identified-organization(3) ieee(111)

 standards-association-numbered-series-standards(2) wave-stds(1609)

 dot2(2) base(1) schema(1) major-version-2(2)}

 Opaque,

 Psid

FROM IEEE1609dot2BaseTypes {iso(1) identified-organization(3) ieee(111)

 standards-association-numbered-series-standards(2) wave-stds(1609)

 dot2(2) base(1) base-types(2) major-version-2(2)}

 CrlContents

FROM IEEE1609dot2CrlBaseTypes {iso(1) identified-organization(3) ieee(111)

 standards-association-numbered-series-standards(2) wave-stds(1609)

 dot2(2) crl(3) base-types(2) major-version-2(2)}

;

CrlPsid ::= Psid(256)

SecuredCrl ::= Ieee1609Dot2Data (WITH COMPONENTS {...,

 content (WITH COMPONENTS {

 signedData (WITH COMPONENTS {...,

 tbsData (WITH COMPONENTS {

 payload (WITH COMPONENTS {...,

 data (WITH COMPONENTS {...,

 content (WITH COMPONENTS {

 unsecuredData (CONTAINING CrlContents)

 })

 })

 }),

 headerInfo (WITH COMPONENTS {...,

 psid (CrlPsid),

 generationTime ABSENT,

 expiryTime ABSENT,

 generationLocation ABSENT,

 p2pcdLearningRequest ABSENT,

 missingCrlIdentifier ABSENT,

 encryptionKey ABSENT

 })

 })

 })

 })

})

END

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

198

B.3.3 CRL: Service Specific Permissions (SSP)

IEEE1609dot2CrlSsp {iso(1) identified-organization(3) ieee(111)

standards-association-numbered-series-standards(2) wave-stds(1609)

dot2(2) crl(3) service-specific-permissions(3) major-version-2(2)}

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS

 CrlSeries,

 Uint8

FROM IEEE1609dot2BaseTypes {iso(1) identified-organization(3) ieee(111)

 standards-association-numbered-series-standards(2) wave-stds(1609)

 dot2(2) base(1) base-types(2)}

;

CrlSsp::= SEQUENCE {

 version Uint8(1),

 associatedCraca CracaType,

 crls PermissibleCrls,

 ...

}

CracaType ::= ENUMERATED {isCraca, issuerIsCraca}

PermissibleCrls ::= SEQUENCE OF CrlSeries

END

B.4 Peer-to-peer certificate distribution (P2PCD)

IEEE1609dot2-Peer2Peer {iso(1) identified-organization(3) ieee(111)

standards-association-numbered-series-standards(2) wave-stds(1609)

dot2(2) management(2) peer-to-peer(1) major-version-2(2)}

-- Minor version: 1

--**

--

-- Data types for Peer-to-peer distribution of IEEE P1609.2 support data

--

-- Associated with a two-byte PSID to be assigned.

-- When broadcast over WSMP, to be encoded with OER.

--

--**

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS

 Uint8

FROM IEEE1609dot2BaseTypes {iso(1) identified-organization(3) ieee(111)

 standards-association-numbered-series-standards(2) wave-stds(1609)

 dot2(2) base(1) base-types(2) major-version-2(2)}

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

199

 Certificate

FROM IEEE1609dot2 {iso(1) identified-organization(3) ieee(111)

 standards-association-numbered-series-standards(2) wave-stds(1609)

 dot2(2) base(1) schema(1) major-version-2(2)}

;

Ieee1609dot2Peer2PeerPDU ::= SEQUENCE {

 version Uint8(1),

 content CHOICE {

 caCerts CaCertP2pPDU,

 ...

 }

}

CaCertP2pPDU::= SEQUENCE OF Certificate

END

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

200

Annex C

(informative)

Specifying the use of IEEE Std 1609.2 by SDEEs

C.1 General

A complete specification of a secure data exchange entity (SDEE), i.e., an entity that uses Wireless Access

in Vehicular Environments secure data service (WAVE SDS), includes a specification of how WAVE SDS

is used. This annex provides information to assist the SDEE specifier in providing that specification, in the

form of:

 The 1609.2 security profile, which defines output data structures as well as how optional aspects of

interaction between the SDEE and the SDS are to be carried out: see C.2.

 An overview of Service Specific Permissions (SSPs) for the SDEE and how they map to permitted

payloads: see C.4.

 An overview of additional restrictions on the certificates used by the SDEE: see C.6.

An organization that specifies a SDEE may wish to provide minimum requirements for performance for an

implementation of that entity. For example, there may be a required accuracy metric for the estimate of the

time. These minimum performance requirements are outside the scope of this standard.

C.2 IEEE 1609.2 security profiles

C.2.1 Contents of security profile

C.2.1.1 General

The IEEE 1609.2 security profile for a SDEE is a compact description of the security processing that the

entity carries out. It is intended for inclusion in a full specification of a SDEE, including application behavior.

A security profile is linked to one or more Provider Service Identifiers (PSIDs) and specifies the security

behavior of SDEEs associated with that PSID.

The IEEE 1609.2 security profile specifies the data structures that a SDEE should output. It also specifies the

WAVE Security Services primitives that a calling SDEE can invoke to obtain such output and gives

instructions as to how to set the values of the parameters of those primitives. The IEEE 1609.2 security profile

may set these parameters to specific values or it may describe parameters as “variable”, in which case the

mechanism for setting the parameter values is intended to be described in text. For each entry in a profile,

the profile contains the entry name, the entry value, and notes. The notes are part of the SDEE specification

and may be used to provide information beyond the information provided by the entry value.

A security profile is part of a complete specification of an application area. As such, the application area

specifier has full discretion as to how to use the security profile to provide that complete specification. For

example, some of the entries in the security profile may take different values under different conditions, or

there may be different security profiles for the same application operating in different settings, or there may

be different security profiles for different information flows within an application. Additionally, the

application area specifier may choose to use some mechanism other than the security profile to specify

security operations.

The IEEE 1609.2 security profile contains four sections:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

201

 IEEE 1609.2 security profile identification: describes the IEEE 1609.2 security profile

 Sending: describes options to be set when creating secured data for sending

 Receiving: describes options to be set when processing received secured data

 Security management: describes constraints on the certificates to be used

In the sending and receiving sections, certain entries in the security profile specify the values of particular

fields within a secured protocol data unit (SPDU). A SPDU is an Ieee1609Dot2Data. Fields within the Ieee-

1609Dot2Data are identified using “dot notation”: for example, if a security profile entry governs the contents

of the following:

 The field data

 Within the SignedDataPayload payload

 Within the ToBeSignedData tbsData

 Within the SignedData signedData

 Within the Ieee1609Dot2Content content

 Within an Ieee1609Dot2Data

Then “dot notation” indicates that field by denoting the Ieee1609Dot2Data by d, and referring to “the field

d.content.signedData.tbsData.payload.data”.

C.2.1.2 SDS

C.2.1.3 IEEE 1609.2 security profile identification

Name Type Recommended

values

Description

Security Profile Version Text string “IEEE Std

1609.2a-2017”

Indicates the version of the security profile. Shall

be “IEEE Std 1609.2a-2017” for this version of the

security profile

Name Text string Text string The name to be used to refer to the profile. This

should be unique among names used by security

profiles that reference a particular PSID.

PSIDs List of

PSIDs

Any list of one or

more PSIDs

The PSIDs to be used by SDEEs that use this

profile.

Other considerations Text string Text string A description of the conditions under which this

security profile is to be used.

Guidance for SDEE specifiers:

 Other considerations: The description provided for this entry should be as specific as possible to

avoid ambiguity about how and under what circumstances the security profile is to be used.

C.2.1.3.1 Sending

This part of the IEEE 1609.2 security profile contains the following information.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

202

Name Type Recommended

values

Description

Sign Data enumerated True

The entity signs all outgoing data (with Sec-Signed-

Data.request), outputting an Ieee1609Dot2Data d

with d.content indicating signedData.

False The entity does not sign outgoing data.

Text Provide a description of how the SDEE determines

which outgoing protocol data units (PDUs) to sign.

Signed Data in

Payload

Boolean True

False

If true, in the output signed SPDU which is an

Ieee1609Dot2Data d, the field d.content.signedData.

tbsData.payload.data is present. If false, it is absent.

External Data Boolean True

False

If true, in the output signed SPDU which is an

Ieee1609Dot2Data d, the field d.content.signedData.

tbsData.payload.extDataHash is present. If false, it

is absent.

External Data Source Text How the SDEE obtains any data that is hashed to

provide extDataHash.

External Data Hash

Algorithm

Enumerated “SHA-256” The algorithm used to hash the external data.

Set Generation Time

in Security Headers

Boolean True

False

The value set as Set Generation Time when invoking

Sec-SignedData.request. If True, in the output signed

SPDU which is an Ieee1609Dot2Data d, the field

d.content.signedData.tbsData.headerInfo.

.generationTime is present. If false, it is absent.

Set Generation

Location in Security

Headers

Boolean True

False

The value set as Set Generation Location when

invoking Sec-SignedData.request. If True, in the

output signed SPDU which is an Ieee1609Dot2Data

d, the field d.content.signedData.tbsData.headerInfo

.generationLocation is present. If false, it is absent.

Set Expiry Time in

Security Headers

Boolean True

False

The value set as Set Expiry Time when invoking

Sec-SignedData.request. If True, in the output signed

SPDU which is an Ieee1609Dot2Data d, the field

d.content.signedData.tbsData.headerInfo-

.expiryTime is present. If false, it is absent.

Signed SPDU

Lifetime

Time interval Any time interval,

or “n/a” if

SetExpiryTimeIn-

SecurityHeaders is

False, or “Text” if a

more complicated

description is

required

The lifetime of a signed SPDU, i.e., the time interval

between the generation time and the expiry time.

Provided only if Set Expiry Time in Security Headers

is True. In this case, the field d.content.signedData.

tbsData.headerInfo.expiryTime takes the value

(current time + Signed SPDU Lifetime).

Signer Type Self Enumerated “Required”,

“Permitted”,

“Prohibited”

Whether in the Ieee1609Dot2Data d, the field d.-

content.signedData.signer may take the value self.

Signer Type Self

Permitted

Text If Signer Type Self is equal to Permitted, the

conditions under which the signer type may be self.

Verification Key

Location for Signer

Type Self

Text If Signer Type Self is equal to Permitted or

Prohibited, instructions for how the SDEE can obtain

the verification key.

Signer Identifier

Policy Type

Enumerated Simple

Text

Describes the type of the Signer Identifier Policy. In

the output signed SPDU, which is an Ieee1609Dot2-

Data d, the Signer Identifier Policy indicates which

option in the field d.content.signedData.signer is

selected.

If this is “Simple”, the Simple Signer Identifier

Policy fields below are specified. If it is “Text”, the

Text Signer Identifier Policy field below is specified.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

203

Name Type Recommended

values

Description

Simple Signer

Identifier Policy:

Minimum Inter Cert

Time

Time interval

(for example,

“one

second”)

Any valid interval

of time, or “always”

Used to set Signer Identifier Type when invoking

Sec-SignedData.request, i.e., indicates which option

in the field d.content.signedData.signer is selected.

If the certificate being signed with has not been

attached to as signed SPDU within this time, i.e., if a

sign operation has not set Signer Identifier Type to

certificate within this time or if the certificate has

not been used within this time, or if this value is

“always”, Sec-SignedData.request primitive is

invoked with Signer Identifier Type set to

“certificate” and Signer Identifier Cert Chain Length

set to Simple Signer Identifier Policy: Cert

ChainLength. In terms of the output, the field d.-

content.signedData.signer.

certificate is present and contains (Simple Signer

Identifier Policy: Cert ChainLength) certificates.

Otherwise, the Sec-SignedData.request primitive is

invoked with Signer Identifier Type set to digest and

in the output Ieee1609Dot2Data d, the field

d.content.signedData.signer.digest is present.

Simple Signer

Identifier Policy:

Exceptions

Boolean True

False

If True, there are exceptions to the simple policy

which are recorded in the notes. If False, there are no

exceptions.

Simple Signer

Identifier Policy:

Signer Identifier Cert

Chain Length

Integer or

enumerated

−256 to −1

1 to 256

“Max”

The value set as the Signer Identifier Cert Chain

Length when invoking Sec-SignedData.request; in

other words, the intended length of the certificate

chain to be sent.

Text Signer Identifier

Policy

Text Human-readable

text

A text description of how the Signer Identifier Type

is set, i.e., which option in the field d.content.

signedData.signer is selected.

Sign With Fast

Verification

enumerated Uncompressed

Compressed

No

Optional

The value set as Sign With Fast Verification when

invoking Sec-SignedData.request. If “optional”,

implementations are allowed but not required to

provide fast verification data. If “No”, an

implementation that provides fast verification data is

not conformant.

In terms of the output Ieee1609Dot2Data d: if this

value is “Uncompressed”, the field d.content.

signedData.signer.signature.[ecdsa256signature|

ecdsaBrainpoolP256r1Signature|

ecdsaBrainpoolP384r1Signature].r indicates

uncompressed; if this value is “compressed”, that

field indicates compressed-y-0 or compressed-y-1; if

it is “no”, that field indicates x-only; if it is

“optional”, the field may indicate any of the choices.

EC Point Format Enumerated Uncompressed

Compressed

Variable

The value set as the EC Point Format when invoking

Sec-SignedData.request.

In terms of the output Ieee1609Dot2Data d: if this is

“Uncompressed”, then any elliptic curve point fields

in d indicate the choice uncompressed; if this is

“Compressed”, then any elliptic curve point fields in

d indicate the choice compressed-y-0 or compressed-

y-1.

p2pcd_flavor Enumerated Inline

Out of Band

None

Whether to use the peer-to-peer certificate

distribution defined in Clause 8.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

204

Name Type Recommended

values

Description

p2pcd_max-

ResponseBackoff

Time or n/a If p2pcduseInteractiveForm is True, the maximum

backoff time when responding to a request as

defined in Clause 8. Otherwise, “n/a”.

p2pcd_response-

ActiveTimeout

Time or n/a If p2pcduseInteractiveForm is True, the time after

which a response-active state ends with respect to a

particular trigger certificate as defined in Clause 8.

Otherwise, “n/a”.

p2pcd_request-

ActiveTimeout

Time or n/a If p2pcduseInteractiveForm is True, the time before

which a second request will not be sent for a

particular certificate after sending the first request, as

defined in Clause 8. Otherwise, “n/a”.

p2pcd_observed-

RequestTimeout

Time or n/a If p2pcduseInteractiveForm is True, the time before

which a request will not be sent for a particular

certificate after observing the another party’s request

for the same certificate, as defined in Clause 8.

Otherwise, “n/a”.

p2pcd_currentlyUsed-

TriggerCertificate-

Time

Time or n/a If p2pcduseInteractiveForm is True, a time used to

determine whether a trigger certificate is “currently

used” as defined in Clause 8. Otherwise, “n/a”.

p2pcd_response-

CountThreshold

Integer or n/a If p2pcduseInteractiveForm is True, a number used

to determine whether or not a response is sent to a

particular P2PCD request as defined in Clause 8.

Otherwise, “n/a”.

Repeat Signed SPDUs Boolean True

False

Whether each new PDU is signed or a signed SPDU

is repeated for its lifetime.

Time Between Signing Time or n/a If Repeat Signed SPDUs is True, the time between

generating fresh signed SPDUs.

Encrypt Data enumerated No

Text

Specifies whether encryption is used, and if so how

the entity obtains the encryption key. “Text”

indicates that a full text description is provided.

Guidance for SDEE specifiers:

 Sign Data: If the data is signed only under certain circumstances, indicate what those circumstances

are. If the circumstances are consistent (for example, certain information flows are signed and certain

ones aren’t), consider specifying two different security profiles for the same flow.

 Signed Data in Payload: In general, including the signed data in the payload is the most robust

solution and should be preferred.

 External Data, External Data Source: If external signed data is used, the notes section should indicate

unambiguously how it is obtained and how it is formatted for hashing. One possible use of external

data would be to provide assurance that a given instance of signed data is associated with a session,

by providing the session ID or the hash of all previous session traffic as the external data. This field

should be used to specify both how the sender and the receiver obtain the external data.

 External Data Hash: Only SHA-256 is supported.

 Set Generation Time in Security Headers: The SDEE should set generation time in the security

headers if it is not included in the signed SPDU payload, or if it is included in the signed SPDU

payload but not with a long enough time counter to prevent replay attacks. This requirement arises

from the need for the generation time of the message to fall during the validity period of the

certificate.

 Set Generation Location in Security Headers: Set to “True” if the generation location is significant

and if it is not given in the payload. Set to “False” if the generation location is not relevant (for

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

205

example, for Certifiate Revocation Lists) or if it is given in the PDU payload (for example, for typical

safety messages).

 Set Expiry Time in Security Headers, Signed PDU Lifetime: The expiry time need not be set if there

is a way for the receiving SDEE to discard too-old messages, for example:

 The PDU processing itself rejects too-old messages.

 There is some default lifetime such that it is always safe to reject messages older than that and

always safe to pass messages less old than that to the SDEE. See for example the Basic Safety

Message security profile in SAE J2945/1 [B21].

 The PDU payload contains an expiry time.

 If the safe lifetime of two different PDUs may be significantly different in a way that the sending

SDEE can predict, but a receiving SDEE cannot know, then an expiry time should be included. For

example, in the case of the WAVE Service Advertisement (WSA), a Provider may add or remove

services available at any time during working hours (and so may want to have a short WSA lifetime

so that only current information is accepted) but may not update overnight (and so may be able to

have a longer lifetime during those hours). The Signed PDU Lifetime should be the maximum time

for which the SDEE specifier determines that there is no significant risk to a receiver from accepting

an out-of-date SPDU.

 Signer Type Self, Signer Type Self Permitted, Verification Key Location for Signer Type Self: In

general, Signer Type Self should be “Prohibited” and the other two fields can be omitted.

 Signer Identifier Policy Type: Set to “Simple” if the policy can be stated using the simple fields, i.e.,

if the policy consists of sending a digest X times and a single other signer identifier type Y times

during a given time period. Set to “Text” otherwise.

In general, for settings where predistribution of CA certificates is possible and channel capacity is

constrained, this can be set to Simple with Simple Signer Identifier Policy: Minimum Inter Cert Time

set to about 0.5 seconds and Simple Signer Identifier Policy: Signer Identifier Cert Chain Length set

to 1, i.e., only the end-entity certificate is ever sent. Note that the Simple Signer Identifier Policy:

Signer Identifier Cert Chain Length is the number of certificates that will be sent along with a signed

PDU; it is not the maximum certificate chain length of the end entity itself. The receiving side has a

policy establishing what the maximum number is for this value. For settings where predistribution of

CA certificates is not possible and channel capacity is not constrained, Simple Signer Identifier

Policy: Minimum Inter Cert Time set to about 0.5 seconds and Simple Signer Identifier Policy: Signer

Identifier Cert Chain Length set to −1. For other scenarios, the SDEE specifier states the best signer

identifier policy. For any SDEE that uses this approach, it will attach a full certificate the first time

it signs with that certificate.

 Sign With Fast Verification: This should in general be “Compressed”. There is no advantage to “No”

over “Optional”.

 EC Point Format: This should be “Compressed” if channel capacity is limited, “Uncompressed”

otherwise.

 p2pcd_flavor and the interactive-form p2pcd_* variables: in general it is recommended that SDEEs

use P2PCD if practical. The p2pcd_* variables should be set so as to manage the amount of additional

data traffic on the channel caused by P2PCD. For example, if the values selected are

p2pcd_maxResponseBackoff = 0.25 s, p2pcd_responseActiveTimeout = 0.25 s,

p2pcd_requestActiveTimeout = 0.25 s, p2pcd_observedRequestTimeout = 0.25 s,

p2pcd_currentlyUsedTriggerCertificateTime = 1 minute, p2pcd_responseCountThreshold = 3, then

each unknown certificate adds about 12 messages per second, possibly slightly more because of

hidden node effects. If p2pcd_requestActiveTimeout = 0, the requesting WAVE Security Services

instance will send a request without regard to whether or not other instances are also requesting the

same certificate.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

206

 Repeat Signed PDUs, Time Between Signing: If a PDU’s contents change very slowly, it can reduce

the computational burden on a sending device if the PDU is signed at time t and then retransmitted

until its expiry time. It is recommended that this is only used if Set Expiry Time in Security Headers

is true to reduce the risk that an old PDU is accepted as valid. If Repeat Signed PDUs is specified,

Time Between Signing should also be specified as a time or as an algorithm used to determine the

time between signing events. Time Between Signing should be similar to Signed SPDU Lifetime.

 Encrypt Data: A specification of a SDEE that encrypts data includes a specification of how the SDEE

obtains the key(s) or certificate(s) to which the data is encrypted. Since different flows might obtain

the keys in different ways, there might be different security profiles for different flows.

NOTE—The Simple Signer Identifier Policy: Signer Identifier Cert Chain Length is the number of certificates that will

be sent along with a signed PDU; it is not the maximum certificate chain length of the end entity itself. The receiving

side has a policy establishing what the maximum number is for this value.

C.2.1.3.2 Receiving

This part of the IEEE 1609.2 security profile contains the following information.

Name Type Valid range Description

Use Preprocessing Enumerated True

False

Text

Specifies whether or not a receiving SDEE

invokes Sec-SecureDataPreprocessing.confirm.

This should be set to “False” if Sign Data in the

sending policy is False. This should be set to

“True” if the signer identifier policy in the

sending profile allows a SignerIdentifier of type

digest. It should also be set to “True” if

p2pcd_flavor takes any value other than “none” in

the sending profile. The “Text” option is provided

in case there are conditions that should be

evaluated to decide whether or not to invoke

preprocessing.

Verify Data Enumerated True

False

Text

Specifies whether or not a receiving entity

attempts to verify data.

If SignData in the sending profile is False, this is

set to “False”.

If SignData in the sending profile is True, this is

set to “True” to denote that the receiving entity

attempts to verify all incoming data, or “Text” to

denote that there is a fuller textual description.

Maximum Full Certificate

Chain Length

Integer Integer ≥ 2 The value set as Maximum Full Certificate Chain

Length when invoking Sec-SignedData-

Verification.request.

Relevance: Replay Boolean True

False

The value set as Relevance: Replay when

invoking Sec-SignedDataVerification.request.

Relevance: Generation Time

in Past

Boolean True

False

The value set as Relevance: Generation Time in

Past to Sec-SignedDataVerification.request.

Validity Period Time interval Any time

interval such as

“5 seconds” or

“between 1 and

2 seconds”

The value to set as Validity Period when invoking

Sec-SignedDataVerification.request. Set if

Relevance: Generation Time in Past or

Relevance: Replay is “True”. May be a text

description rather than a single time period. This

is the time interval such that signed SPDUs with a

generation time in the past by more that Validity

Period are rejected as invalid.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

207

Name Type Valid range Description

Relevance: Generation Time

in Future

Boolean True

False

The value set as Relevance: Generation Time in

Future to Sec-SignedDataVerification.request.

Acceptable Future Data

Period

Time Any positive

time value

The value set as Acceptable Future Data Period

when invoking Sec-SignedData-

Verification.request, or the algorithm for setting

that value.

Generation Time Source Enumerated Security

Headers

Payload

If GenerationTimeSource is “Security Headers”,

the generation time parameters to Sec-Signed-

DataVerification.request is obtained from the

corresponding field in the HeaderInfo of the

SPDU.

If GenerationTimeSource is “Payload”, the

generation time is obtained from elsewhere (for

example, from the payload) and are provided by

the entity to Sec-SignedDataVerification.request.

Relevance: Expiry Time Boolean True

False

The value set as Expiry Time Relevance Check

when invoking Sec-SignedData-

Verification.request.

Expiry Time Source Enumerated This need only be set if Expiry Time Relevance Check is true.

Security

Headers

The Expiry Time parameter to Sec-SignedData-

Verification.request is obtained from the

corresponding fields in Sec-SecureDataPre-

processing.confirm.

Payload The Expiry Time is obtained from elsewhere (for

example, from the payload) and is provided by the

entity to Sec-SignedDataVerification.request.

Consistency: Generation

Location

Boolean True

False

Whether the receiving SDEE should carry out

consistency checks based on generation location.

Relevance: Generation

Location Distance

Boolean or

“Text”

True

False

Text

Whether or not to request the SDS to reject

messages that are too far from the receiver. If

“True” or “False”, this is set as Reject Distant

Messages when invoking Sec-SignedData-

Verification.request. If the decision on whether or

not to request the SDS to reject messages that are

too distant depends on context, then the value

should be set to “Text” and the Notes column

should explain how the decision is made.

Validity Distance Distance in

meters or

“Variable”

Any positive

distance or

“Variable”

The value set as Validity Distance when invoking

Sec-SignedDataVerification.request. Set only if

Reject Distant Messages is “True”.

Generation Location Source Enumerated This is specified if Reject Distant Messages or

GenerationLocationConsistencyCheck is true, or

SupportedGeographicRegions (see C.2.1.3.3) contains any value

other than “None”.

“Security

Headers”

The Generation Location parameter to Sec-

SignedDataVerification.request is obtained from

the corresponding fields in Sec-SecureDataPre-

processing.confirm.

“Payload” The Generation Location is obtained from the

payload of the PDU and is provided by the entity

to Sec-SignedDataVerification.request.

“Other” The Generation Location is obtained from some

other source and is provided by the entity to Sec-

SignedDataVerification.request. The source from

which the generation location is obtained is

provided as part of the SDEE specification.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

208

Name Type Valid range Description

Additional Geographic

Consistency Conditions

Boolean True

False

If True, then additional geographic consistency

conditions need to be checked to determine the

validity of a signed SPDU as described in

5.2.3.3.5. These consistency conditions are not

part of the security profile but are expected to be

provided as part of the SDEE specification

Identified Region

Representation Accuracy

Text or n/a A description

of the accuracy

requirements

for identified

region used by

the SDEE, if

appropriate

As discussed in 5.2.3.4, this may be a list of the

identified region types or individual identified

regions that are used by the SDEE, along with a

description of the required accuracy of the internal

representation of each identified region. The

description may provide different accuracy

requirements for different regions. The description

may also state that the accuracy requirement can

be determined on a per-site or per-deployment

basis.

Overdue CRL Tolerance Time period

or text

Any positive

time period or

text

The value set as Overdue CRL Tolerance when

invoking Sec-SignedDataVerification.request.

Relevance: Certificate

Expiry

Boolean True

False

Whether or not to carry out the certificate expiry

relevance check specified in 5.2.4.2.7.

Accept Encrypted Data Enumerated

or text

“Exclusively” The entity rejects any received data that are not

encrypted.

“No” The entity rejects any received data that are

encrypted.

Text Depending on conditions to be specified by the

organization that specifies the IEEE 1609.2

security profile, the entity may accept non-

encrypted data or encrypted data.

Guidance for users:

 Verify Data: False if Sign Data is set to “False” in the profile for the incoming flow. Otherwise,

should specify the criteria used to decide whether verification is necessary. An implementation of a

SDEE may verify more incoming messages than the ones that meet these criteria.

 Generation Time Relevance Check: It is recommended that either this or expiry time is specified.

 Generation Time Source: This field is used to check validity of generation time against the certificate

validity period, so this is necessary in a 1609.2 Security Profile even if Generation Time Relevance

Check is false.

 Expiry Time Relevance Check: Consistent with Set Expiry Time in Security Headers in the send

security profile.

 Expiry Time Source: Consistent with Set Expiry Time in Security Headers in the send security profile.

 Reject Distant Messages: Set to “True” if the SDS is desired to reject distant messages. Set to “False”

if the SDEE rejects distant messages as part of the SDEE processing, or if generation location is

irrelevant.

 Generation Location Source: Consistent with Set Generation Location in Security Headers in the

send security profile.

 Additional Geographic Consistency Conditions: Should be set to “True” if it is appropriate to include

additional consistency conditions governing whether or not a signed SPDU is authorized to make

statements relating to a particular geographic location, as discussed in 5.2.3.3.5.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

209

 Identified Region Representation Accuracy: This is a trade-off between the cost of storing accurate

representations of the regions and the risk that a compromised SDEE will attempt to send from a

location that it is not entitled to send from, but appears entitled to send from due to map inaccuracies.

For land borders it may be wise to require representations to accurately represent which roads lie in

a region, while it may not be necessary to require strict accuracy for a border that lies between roads.

Accuracy requirements might additionally be different for sea borders.

 Accept Encrypted Data: Consistent with Encrypt Data in the send security profile.

 Detect Replay: Set to “True” if (a) replayed messages (i.e., the same message, acted upon twice) are

a threat and (b) the SDEE processing does not automatically reject replayed messages.

 Data Validity Period: A reasonable lifetime for the data. For example, for time-critical safety

applications, this might be a small number of seconds, while for other messages with less dynamic

contents it might be longer.

 Data Validity Distance: A reasonable generation distance for the data. Most likely to be between 300

m and 1000 m, depending on whether the data is expected to be generated by roadside equipment

(RSE) or on-board equipment (OBE).

 Acceptable Future Data Period: Depends on the time-sensitivity of the receiving SDEE. If the SDEE

is not very time-sensitive, then data that claims to have been generated slightly in the future is

acceptable. Any value greater than about 0.5 seconds requires strong justification.

 Maximum Certificate Chain Length: Should be consistent with Simple Signer Identifier Policy.

 Signer Identifier Cert Chain Length. Indicates how long a certificate chain is expected to be for this

SDEE, and so the certificate chain length that a 1609.2 implementation should support.

 Overdue CRL Tolerance: This value depends on a number of factors including: (a) the likelihood that

devices that implement this SDEE specification have a reliable internet data connection—higher

likelihood should lower this value; (b) the risk from accepting false messages versus rejecting true

messages—the greater the relative risk of false messages, the lower this value should be; (c) the

typical lifetime of a collection of certificates issued for implementations of this SDEE specification;

if an implementations’ certificates reach only a short time into the future, then certificate revocation

lists (CRLs) are less important and the Overdue CRL Tolerance value can be set to be large. This

value may any number from seconds to weeks or months. Additionally, if it takes the value “Text”,

it may include exceptions, such as allowing a grace period if the SDEE has been inactive for a long

time during which the SSME may attempt to obtain the CRL.

 Relevance: Certificate Expiry: It is strongly recommended that this is set to “True” unless the SDEE

has assurance that expired certificates remain on the CRL for some period of time.

 Accept Encrypted Data: Set to “True” if the SDEE receives encrypted data.

C.2.1.3.3 Security management

This part of the IEEE 1609.2 security profile contains the following information for each PSID for which the

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

210

entity uses an Ieee1609Dot2Data structure:

Name Type Valid range Description

Signing Key

Algorithm

Enumerated ecdsaNistP256withSha256

ecdsaBrainpoolP256r1withS

ha256

One of the valid signing algorithms identified in 5.3.1

and 6.4.38.

Encryption Algorithm Enumerated eciesNistP256

eciesBrainpoolP256r1

One of the valid encryption algorithms identified in

5.3.5 and 6.3.20.

Implicit or Explicit

Certificates

Enumerated Explicit A receiver supports receiving explicit certificates

only and a sender uses an explicit certificate only for

a given transmission.

Implicit A receiver supports receiving implicit certificates

only and a sender uses an implicit certificate only for

a given transmission.

Both A receiver supports receiving both implicit and

explicit certificates and a sender may choose to use

either an implicit or an explicit certificate for a given

transmission if it has certs of both types available.

EC Point Format Enumerated Compressed

Uncompressed

How points are to be represented in certificates.

SupportedGeographic

Regions

Array of

enumerated

An array of entries, each of

which is one of:

None

Rectangular

Circular

Polygonal

Identified: Country Only

Identified: Country and

Regions

Identified: Country and

Subregions

The type of geographic region supported for

conformant certificates.

Maximum Full

Certificate Chain -

Length

Integer Any value greater than 1, or

“unbounded”

The maximum length from authorization certificate

to root certificate of any certificate chain used by a

SDEE. A received signed SPDU whose certificate

chain is longer than this may be rejected.

SDEEs may have a maximum full certificate chain

length, but may also give guidance to developers that

an appropriate certificate chain length is less than this

maximum. For example, since long certificate chains

increase packet size and therefore channel congestion

and error rates, it is appropriate for the specification

of the SDEE to give guidance that short (relative to

the maximum) certificate chains should be used. This

is particularly important for SDEEs that transmit

frequently.

Use Individual

Linkage ID

Boolean True

False

Whether to support individual linkage ID-based

revocation in the certificates.

Use Group Linkage

ID

Boolean True

False

Whether to support group linkage ID-based

revocation in the certificates.

Signature Algorithms

in Chain or CRL

Sequence of

Enumerated

One or more of:

ecdsaNistP256withSha1

ecdsaBrainpoolP256r1withS

ha1

ecdsaBrainpoolP384r1withS

ha1

The signature algorithms that may be used in the

certificate chain or to sign CRLs relevant to the

application.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

211

C.2.2 Maintenance of security profile policy

A number of parameters in the security profile could be the subject of a security profile policy for that SDEE,

which in this context means that:

a) There is an interest in consistent behavior across SDEE instances, so all SDEE instances at a given

time and in a particular region should have the same values.

b) There is a possibility that the appropriate value is going to change over time, for example as the

number of participants in that SDEE increases.

An SDEE specification should note whether any of these parameters may need to be globally specified and

updated, i.e., whether they are the subject of a changeable security profile policy. When SDEE instances

based on that SDEE specification are deployed there should be mechanisms to update parameters that are

governed by policy.

The following parameters may be particularly suitable to be subject to policy, as they can be changed without

fundamentally changing the behavior of the invoking SDEE: Data Validity Period, Data Validity Distance,

Acceptable Future Data Period, Overdue CRL Tolerance, Signature Algorithm, Signature Algorithms in

Chain or CRL.

C.3 IEEE 1609.2 security profile proforma17

C.3.1 Instructions for completing the IEEE 1609.2 security profile proforma

The developer of an IEEE 1609.2 security profile may specify the profile by completing this proforma. The

main part of the proforma is a fixed questionnaire, divided into entries. Answers to the questionnaire items

are to be provided in the center column, and any elaboration necessary is to be provided in the rightmost

column. The entries in the value column are either drawn from the list of permitted values given above, or

are “n/a”.

17 Copyright release for 1609.2 security profile proformas: Users of this standard may freely reproduce the 1609.2 security profile
proforma in this annex so that it can be used for its intended purpose and may further publish the completed 1609.2 security profile.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

212

C.3.2 IEEE 1609.2 security profile proforma

C.3.2.1 IEEE 1609.2 security profile identification

Field Value Notes

Name

PSIDs

Other

considerations

C.3.2.2 Sending

Field Value Notes

Sign Data

Signed Data in Payload

External Data

External Data Source

External Data Hash Algorithm

Set Generation Time in Security Headers

Set Generation Location in Security Headers

Set Expiry Time in Security Headers

Signed SPDU Lifetime

Signer Type Self

Signer Type Self Permitted

Verification Key Location for Signer Type

Self

Signer Identifier Policy Type

Simple Signer Identifier Policy: Minimum

Inter Cert Time

Simple Signer Identifier Policy: Exceptions

Simple Signer Identifier Policy: Signer

Identifier Cert Chain Length

Text Signer Identifier Policy

Sign With Fast Verification

EC Point Format

p2pcd_flavor

p2pcd_maxResponseBackoff

p2pcd_responseActiveTimeout

p2pcd_requestActiveTimeout

p2pcd_observedRequestTimeout

p2pcd_currentlyUsedTriggerCertificateTime

p2pcd_responseCountThreshold

Repeat Signed SPDUs

Time Between Signing

Encrypt Data

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

213

C.3.2.3 Receiving

Field Value Notes

Use Preprocessing

Verify Data

Maximum Full Certificate Chain Length

Relevance: Replay

Relevance: Generation Time in Past

Validity Period

Relevance: Generation Time in Future

Acceptable Future Data Period

Generation Time Source

Relevance: Expiry Time

Expiry Time Source

Consistency: Generation Location

Relevance: Generation Location Distance

Validity Distance

Generation Location Source

Additional Geographic Consistency Conditions

Identified Region Representation Accuracy

Overdue CRL Tolerance

Relevance: Certificate Expiry

Encrypted Data

C.3.2.4 Security management

Field Value Notes

Signing Key Algorithm

Encryption Algorithm

Implicit or Explicit Certificates

EC Point Format

Supported Geographic Regions

Maximum Full Certificate Chain Length

Use Individual Linkage ID

Use Group Linkage ID

Signature Algorithms in Chain or CRL

C.3.2.5 Other

Field Value Notes

Fields that may be subject to

policy update

C.4 Service Specific Permissions (SSP)

C.4.1 General

As discussed in 5.2.3.3.3, the IEEE 1609.2 certificate provides two fields that are used to determine that the

payload of a signed SPDU is consistent with the permissions of the sender. The PSID field indicates that the

sender is entitled to send payloads associated with the application area indicated by the PSID field. The SSP

field indicates that the sender has permissions to send specific payload types within that application area. The

definition of application behavior within the application area includes the mapping from payload contents to

the permissions (PSID and SSP) that determines the validity of the payload: in other words, one of the

responsibilities of a PSID owner is to define the syntax and semantics of the SSP and to define which payloads

are permitted by specific SSPs. The determination that a payload is consistent with the PSID and SSP cannot

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

214

be made by the SDS, as the SDS cannot know the full payload syntax associated with every PSID; this

determination can only be implemented within the invoking SDEE.

As an example of SSP use, SSPs have been defined by the European Telecommunications Standards Institute

(ETSI) for use by senders of the Cooperative Awareness Message (CAM) (ETSI EN 302 637-2 [B5]) and

Decentralized Environmental Notification Message (DENM) (ETSI EN 302 637-3 [B6]). For CAM, the

message contains several possible extension fields; the SSP defines which extension fields a sender can

include, as well as optional fields within those extension fields.

As a further example of SSP use, this standard defines a SSP for CRLs in 7.4.3.

C.4.2 SSP syntax and semantics

A complete specification of a SDEE that uses the SSP includes a full definition of the syntax and semantics

of the SSP and its relation to PDU payloads consumed by that SDEE, such that an unambiguous

determination may be made as to whether or not a particular payload is permitted by a particular SSP. The

organization defining the SDEE has responsibility to define the syntax and semantics of the SSP. The

organization may follow the approach of ETSI in defining SSPs for CAM (ETSI EN 302 637-2 [B5]) and

DENM (ETSI EN 302 637-3 [B6]), or of this standard in defining the SSP for CRLs in 7.4.3, or some other

approach so long as it is unambiguous.

A PsidSsp structure as defined in this standard may omit the SSP. The definition of the SSP developed by

the PSID owner should state whether this is permissible for a particular PSID, i.e., whether the PSID has a

“default SSP”. If it is permissible for the SSP to be omitted, the definition of consistency between a payload

and a SSP should include a definition of the meaning of the default PSID, i.e., a definition of the consistency

conditions in the case where the SSP is omitted. There is no assumption in this standard about the meaning

of an omitted PSID: it is simply a special case of SSP encoding. It would make sense, though, for the default

SSP to be either the one that is going to be most frequently used or the one that corresponds to the minimal

set of privileges for an entity entitled to use the PSID.

SDEE specifiers may choose to use SSPs that are opaque or in the form of bitmaps of bitmaps (in the end

entity certificate) and bitmasks (in the CA certificate). No matter what form is used, the responsibility is still

with the SDEE to define the semantics of the SSP, i.e. how it maps to the permissions of associated

communications. The difference between the SSP forms from the point of view of the SDS lies in how

consistency is checked between certificates in the chain; in particular, if there is a CA certificate that can

issue certificates for some but not all of the SSP values associated with a particular PSID. The opaque

approach offers most flexibility to the SSP specifier, but with this approach the only way to encode multiple

SSP values in a CA certificate is by explicitly listing them. The bitmap approach allows for very compact

encodings of multiple SSP values in a CA certificate but requires that it is possible for the application

permissions to be sensibly expressed as a bitmap, i.e. that they are more-or-less independent yes/no choices.

SDEE specifiers may take these considerations into account when determining the SSP format for their SDEE

specification.

C.5 Assurance level

A complete specification of a SDEE includes an indication of whether the assuranceLevel field in the

certificate (see 6.4.8) is used to validate SPDU contents, or to permit particular actions based on the SPDU

contents.

C.6 Recommendations on certificates

The recommendations on certificates that should be noted in this section of the SDEE specification should

be considered by certificate authorities (CAs) issuing certificates for that PSID.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

215

 Whether there are restrictions on other SDEEs whose PSIDs may appear in the same certificate. For

example, the certificates for a SDEE that naturally uses long-lived identities are not suitable for use

by a SDEE that broadcasts frequently, as the long-lived identities of the first SDEE would allow the

user to be tracked by observing broadcasts created by the second SDEE.

C.7 Source of encryption keys

This standard supports three means for a sending SDEE to obtain encryption public keys to produce an

encrypted SPDU:

 From a certificate.

 From the encryptionKey field in the HeaderInfo of a SignedData.

 By some other means.

In the first two cases, the key identifier in the RecipientInfo is calculated by hashing the “container” (the

certificate or the signed SPDU); in the third case, the key identifier is calculated by hashing only the public

key. The advantage of hashing the “container” is to prevent misbinding attacks. In these attacks an attacker

tricks one victim into encrypting a message that the victim thinks is meant for one party but is in fact sent to

another party. For example, say Alice has a public key. Mallory sends this public key to Bob, and Bob

encrypts a message, thinking it’s for Mallory. Mallory then forwards the encrypted message to Alice; Alice

decrypts it and thinks that it is intended for her because it was encrypted with her encryption key.

This attack is thwarted by hashing the container: in the above case, whether Mallory had managed to get

Alice’s public key issued as the encryption key in a certificate for Mallory, or instead had included it in a

signed SPDU, the hashed container would be identified with Mallory. Alice would expect that if a message

was intended for her, the hashed container would be her certificate or a signed SPDU that she had previously

sent, and so the attempt to persuade her that the encrypted SPDU was encrypted for her would fail because

(a) the container hash in the RecipientInfo would not match any container hash that Alice had stored; and (b)

the container hash that Alice provides as parameter P1 to ECIES, as specified in 5.3.5, would not match the

container hash that Bob used when encrypting.

It is therefore recommended that SDEE designers who use public key encryption make use of either public

keys in certificates or public keys in signed SPDUs, and avoid “raw” public keys because they do not mitigate

this misbinding threat.

For an SDEE designer choosing between using a public key from a certificate or a public key from a signed

SPDU:

 If the public key is in a certificate, there is one long-term decryption key. This makes key

management and storage simpler on the device, but it carries the risk that if the decryption key is

compromised, all encrypted SPDUs encrypted with that key can be decrypted. In this scenario the

lifetime of the decryption key is essentially the lifetime of the certificate, so if the device is physically

compromised in that time, then a significant number of past communications could be revealed.

 If the public key is in a signed SPDU, there may during the course of its lifetime be many decryption

keys to be managed by any device that hosts SDEEs that sign SPDUs with encryption keys and

receive the encrypted SPDUs for decryption. The device will need to store each individual decryption

key along with the canonicalized hash of the signed SPDU that contained the corresponding

encryption key for at least the length of time in which it expects to receive responses. This creates

more key management complexity than is the case for encryption keys in certificates. However, the

advantage is that if one decryption key is compromised, only messages encrypted with that key will

be compromised. In this scenario an encryption key may be expected to be used one time only, and

the corresponding decryption key can be deleted once the encrypted SPDU has been decrypted. This

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

216

provides greater protection for past messages in the event of device compromise than is provided by

the alternative model of long-lived encryption keys in certificates.

The SDEE designer may select whether encryption keys are contained in certificates or signed SPDUs taking

the above considerations into account.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

217

Annex D

(informative)

Examples and use cases

D.1 Guidance for SDEE specifiers and implementers

a) A receiving secure data exchange entity (SDEE) should call Sec-SecureDataPreprocessing.request

on every received secured protocol data unit (SPDU) to enable security management information to

be correctly transferred: certificates are stored for later use, and peer-to-peer certificate distribution

(P2PCD) is carried out as specified in Clause 8. Since the output of decryption and the contents of a

signed SPDU are both SPDUs themselves, a receiving SDEE should call Sec-SecureData-

Preprocessing.request on those SPDUs as well.

b) Some of the validity criteria in 5.2 are optional or may have SDEE-specific values associated with

them, meaning that values given in the specification are used to develop the implementation of a

particular SDEE. The specification of the receiving SDEE should indicate which optional criteria

and which parameter values or ranges should be used. The specifier of a SDEE may use the IEEE

1609.2 security profile specified in Annex C as a compact way to specify which secure data service

(SDS) parameters are used and which values they should take for that particular SDEE.

c) For performance reasons, a receiving SDEE may not want to carry out all validity checks on a

received SPDU. This applies in particular to cryptographic validity checks, which are

computationally expensive. A receiving SDEE should distinguish between SPDUs that have been

fully validated and SPDUs that have not. The SDEE specification should indicate which actions are

safe to take on SPDUs that have been validated and which actions, if any, the SDEE may take on

SPDUs that have not been validated, or on which only some validation actions have been carried out.

For example, a collision avoidance application may require that incoming SPDUs are signed and that

the driver is only altered, or autonomous driving actions are only taken, on the basis of a signed

SPDU if that signature verifies.

d) A receiving SDEE need not carry out all validity checks on a given SPDU at the same time. Validity

checks are a type of filter that allows protocol data units (PDUs) to be discarded, and there may be

SDEE-specific filters as well. The SDEE implementer is free to choose which order to carry out

validity checks and to mix SDEE-specific validity checks with the validity checks based on 5.2, so

long as a clear distinction is maintained between SPDUs that have been fully validated according to

the security profile and SPDUs that have not.

e) Even if Sec-SignedDataVerification.request indicates that the signed SPDU is valid, this does not

demonstrate that the SPDU meets all the validity conditions necessary to accept the message. There

may be additional SDEE-specific validity conditions, as discussed in 5.2.3.3 and 5.2.4.3. A SDEE

specification should specify what these conditions are, and an implementation of a SDEE should

check that these conditions are satisfied. This standard identifies the following SDEE-specific

validity conditions:

1) Payload consistent with the permissions: the SDS cannot carry out these checks as it cannot

parse the payload of the SPDU.

i) Provider service identifier (PSID). A receiving SDEE should determine that the payload

of the signed SPDU is consistent with the PSID in the security envelope; this should be

trivially true given the consistency requirement of 5.2.3.3.2.

ii) Service Specific Permissions (SSP). A design for a receiving SDEE may also place

additional constraints on a signed SPDU payload for that SDEE, using the SSP field in

the sender’s certificate to indicate those additional constraints. If SSP is present, the

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

218

receiving SDEE should check that the SPDU payload is consistent with the SSP according

to the processing rules specified in the SDEE design. See 5.2.3.3.3 for further discussion.

iii) Assurance level. A design for a receiving SDEE may also specify a minimum assurance

level for particular signed SPDU payloads, based on the assuranceLevel field in the

certificate. In this case, the receiving SDEE should check that the assuranceLevel in the

certificate is appropriate for the received payload. See 5.2.3.3.3 for further discussion.

2) External data: The signature on a signed SPDU may be calculated over data that is not directly

included in the payload of the signed SPDU. In this case, the hash of the external data is

included. The SDEE specification should specify how this data is obtained by both sending and

receiving SDEEs. The receiving SDEE should check that the external data hashes to the correct

value. See 5.2.3.3.4.

D.2 Processing CRLs

A certificate revocation list (CRL) verification process invokes Sec-SignedDataVerification.request to verify

the CRL.

To check that the SSP is consistent with the CRL as specified in 7.3.3, the process:

a) Checks that the CRL signer is consistent with the associatedCraca field in the SSP.

b) Checks that the CRL series in the CRL payload is contained in the crls field in the SSP.

To check that the CRL signer is consistent with the associatedCraca field in the SSP, the process does

the following:

a) If associatedCraca field in the SSP is equal to isCraca, the process determines that the

Certificate Revocation Authorizing Certificate Authority (CRACA) certificate is the certificate that

signed the CRL. To do this:

1) The process extracts the SignerIdentifier from the SignedData containing the signed CRL.

2) If the SignerIdentifier is of type digest, and if the digest field is equal to the crlCraca

field in the CRL payload, the consistency check succeeds.

3) If the SignerIdentifier is of type certificate, and if the HashedId8 of the certificate is equal

to the crlCraca field in the CRL payload, the consistency check succeeds.

4) Otherwise, the consistency check fails.

b) If associatedCraca field in the SSP is equal to issuerIsCraca, the process determines that

the CRACA certificate is the certificate that issued the certificate that signed the CRL. To do this:

1) The process obtains the certificate crlSignCert that signed the CRL:

i) The process extracts the SignerIdentifier from the SignedData containing the signed CRL.

ii) If the SignerIdentifier is of type digest, the process invokes SSME-

CertificateInfo.request with parameters Identifier Type to obtain crlSignCert.

iii) If the SignerIdentifier is of type certificate, then crlSignCert is the first certificate

in the provided array as specified in 6.3.25.

2) The consistency check succeeds if:

i) The field crlSignCert.issuer is of type sha256AndDigest.

ii) The field crlSignCert.issuer/sha256AndDigest is equal to the crlCraca field

in the CRL payload.

3) Otherwise, the consistency check fails.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

219

If the CRL is valid, the CRL receiving process extracts the revocation information about the individual

certificates and stores it in the security services management entity (SSME) via SSME-

AddHashIdBasedRevocation.request, SSME-AddIndividualLinkageBasedRevocation.request, or SSME-

AddGroupLinkageBasedRevocation.request. It provides additional information about the CRL, such as the

next CRL issue date, via SSME-AddRevocationInfo.request.

D.3 Constructing a certificate chain

D.3.1 Examples

Figure D.1 shows a simple certificate chain of length 1, i.e. containing two certificates. The trust anchor is

the root certificate authority (CA) certificate. The authorization certificate and the root CA certificate are

both explicit certificates. The signer id in the authorization certificate identifies the root CA certificate that

issued it. The public key in the root CA certificate is used to verify the signature on the authorization

certificate. If the authorization certificate is used to sign a SPDU, the signer field in the signed SPDU

identifies the specific authorization certificate that signed the SPDU and the public key field in the

authorization certificate is used to verify the signature on the SPDU.

Signed Data

signer

Issuer’s signature

End-Entity Certificate

issuer identifier

public key

Issuer’s signature

Root CA Certificate

public key

Issuer’s signature

verifiesissuer ↑ ↓ subordinate

↓ trust anchor

identifies

Figure D.1—Length-1 certificate chain with explicit certificates
and a root CA as trust anchor

Figure D.2 shows a certificate chain of length 1, i.e. containing two certificates, where the authorization

certificate and the trust anchor are both explicit certificates. In this case the trust anchor is a CA certificate

rather than a root certificate. Other than that the chain is identical to the one presented in Figure D.1.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

220

Signed Data

signer

Issuer’s signature

End-Entity Certificate

issuer identifier

public key

Issuer’s signature

CA Certificate

issuer identifier

public key

Issuer’s signature

verifiesissuer ↑ ↓ subordinate

↓ trust anchor

identifies

Figure D.2—Length-1 certificate chain with explicit certificates
and a non-root CA as trust anchor

Figure D.3 shows a certificate chain of length 1, i.e. containing two certificates, where the authorization

certificate is an implicit certificate. As required, the trust anchor is an explicit certificate. As with explicit

certificates, the signer id in the authorization certificate identifies the root CA certificate that issued it.

However, in this case the issuing certificate does not sign the subordinate certificate. Instead, to

cryptographically verify the certificate, an operation is performed combining the hash of the issuing

certificate, the hash of the authorization certificate, the reconstruction value from the authorization certificate,

and the public key from the CA certificate to reconstruct the authorization’s public key as specified in 5.3.2.

If that public key cryptographically verifies the signature, this provides assurance both that the authorization

did, in fact, sign the SPDU and that the certificate was validly issued by the CA.

Signed Data

signer

Issuer’s signature

End-Entity Implicit

Certificate

issuer identifier

CA Implicit Certificate

signer_id

reconstruction

value

combine to verify

CA Certificate

issuer identifier

public key

Issuer’s signature

issuer ↑ ↓ subordinate

↓ trust anchor

identifies

reconstruction

value

Figure D.3—Length-1 certificate chain with implicit certificates
and a non-root CA as trust anchor

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

221

Figure D.4 illustrates two longer certificate chains. It shows that for each pair of certificates in the chain, the

subordinate certificate contains an issuer identifier identifying the issuing certificate and the issuing

certificate’s public key verifies the subordinate certificate either explicitly or implicitly.

The chain on the left contains explicit certificates only. The public key in each issuing certificate verifies the

signature of its subordinate certificate.

The chain on the right ends with two implicit certificates. The validity of the implicit certificates is

demonstrated by combining the hashes of all the implicit certificates, the reconstruction values of all the

implicit certificates, and the hash and public key from the first explicit certificate in the chain to verify the

signature on the signed data as specified in 5.3.2.

CA Certificate

signer_id

public key

Issuer’s signature

Signed Data

signer

Issuer’s signature

End-Entity Certificate

issuer identifier

public key

Issuer’s signature

CA Certificate

issuer identifier

public key

Issuer’s signature

Root CA Certificate

issuer identifier

public key

Issuer’s signature

verifies

CA Certificate

signer_id

public key

Issuer’s signature

CA Certificate

issuer identifier

public key

Issuer’s signature

issuer ↑ ↓ subordinate

issuer ↑ ↓ subordinate

issuer ↑ ↓ subordinate

↓ trust anchor

identifies

CA Certificate

signer_id

public key

Issuer’s signature

Signed Data

signer

Issuer’s signature

CA Implicit Certificate

issuer identifier

reconstruction

value

Root CA Certificate

issuer identifier

public key

Issuer’s signature

combine to verify

CA Certificate

signer_id

public key

Issuer’s signature

CA Certificate

issuer identifier

public key

Issuer’s signature

issuer ↑ ↓ subordinate

issuer ↑ ↓ subordinate

issuer ↑ ↓ subordinate

↓ trust anchor

identifies

End-Entity Implicit

Certificate

issuer identifier

reconstruction

value

identifies

verifiesidentifies

verifiesidentifies
verifiesidentifies

Figure D.4—Long certificate chains, one with all explicit certificates (left)
and one ending with two implicit certificates (right)

D.3.2 Construction

A signed SPDU need not include all the certificates in the chain. Instead, the SPDU may include a chain of

one or more certificates that does not reach all the way back to a trust anchor or the SPDU may omit all

certificates and instead include a reference to its signing certificate using a hash. In this case it may be possible

to construct the chain using certificates that are stored by the SSME. If the SDS encounters a certificate hash

for which the corresponding certificate is not included in the PDU, the services may invoke the SSME-

CertificateInfo.request primitive to determine whether that hash corresponds to a certificate that is already

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

222

known to the SSME. Figure D.5 illustrates the logic flow to be used when constructing a certificate chain.

The processing cycles through the certificates that were received with the signed SPDUs, and when no

received certificate matches the current signer identifier, the processing invokes SSME-

CertificateInfo.request to attempt to continue building it.

It is conceivable that the issuer identifier in a certificate may identify two different certificates known to the

SSME. This will happen if the HashedId8 of the two certificates, i.e., the low-order 8 bytes of the SHA-256

hashes of the two certficates, are identical. For any pair of certificates, the probability that the two HashedId8

values collide is 2−64. If the SSME stores k certificates, the probability that there is at least one collision is

roughly equal to k2 × 2−64, In the unlikely event of a collision, the SDS builds both certificate chains. If one

does not have consistent permissions it is discarded. If both have consistent permissions they are both

cryptographically verified. In this case if either chain verifies correctly, that chain is taken to be valid and is

able to validate the signed SPDU.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

223

Input signed
communication

What is the signer
identifier type?

Invoke SSME-
CertificateInfo.request,

providing digest as
input

Digest

Chain could not be
constructed, message
cannot be validated

Chain was
constructed, proceed

with validation

What was result
code from SSME-
CertificateInfo.con-

firm?

Revoked /
Expired /

Not Found

Trust
Anchor

Is certificate
returned by

SSME-Certificate-
Info.confirm a trust

anchor?

Success

Set digest to the issuer
identifier in the

certificate

Set digest to the signer
identifier in the

message

Not Trust
Anchor

Invoke SSME-
CertificateInfo.request,
providing certificate as

input

What was result
code from SSME-
CertificateInfo.con-

firm?

Is certificate
returned by

SSME-Certificate-
Info.confirm a trust

anchor?

Success

Set certificate to
certificate identified by

the current issuer
identifier

Not Trust
Anchor

Revoked /
Expired

Trust
Anchor

Is the certificate
identified by the
current issuer

identifier included
with the message?

No

Set certificate to the
signer’s certificate

Certificate or
Certificate Chain

Yes

Figure D.5—Logic flow for constructing a certificate chain

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

224

D.4 Peer-to-peer certificate distribution

D.4.1 General

D.4 gives an example of how P2PCD can be implemented using the primitives defined in this standard along

with internal state variables.

D.4.2 State, timers, and configuration parameters within SSME

D.4.2.1 State within SSME

D.4.2.1.1 Request

In this example, the SSME maintains the following state variables to support P2PCD request:

isRequestActive (p2pcdLearningRequest c, SDEE ID s):

 Type: Boolean.

 Meaning: True if the SSME has seen an incoming or created an outgoing learning request for c

associated with SDEE s within a configurable period, such that it does not create another learning

request for c. False otherwise.

 Change conditions: Set to “False” on initialization. Set to “True” by SSME-Sec-IncomingP2pcd-

Info.request or SSME-Sec-OutgoingP2pcdInfo.request. Set to “False” on the expiry of the timer

p2pcdRequestBackoffTimer (p2pcdLearningRequest c, SDEE ID s).

queuedMissingCertIndicators (SDEE ID s):

 Type: array of HashedId8 h.

 Meaning: The array of certificate identifiers for certificates which the SSME does not know and for

which there is not an outstanding learning request. The SSME selects from this array when generating

a p2pcdLearningRequest as specified in D.4.3.1 step d)1).

 Change conditions: Initialized to being empty. Entries are added to this array by SSME-Sec-

IncomingP2pcdInfo.request when SSME-Sec-IncomingP2pcdInfo.request passes a certificate with

an unknown certificate on its chain. Entries are removed from this array by:

 SSME-AddCertificate.request, when the certificate passed via the primitive indicates a

HashedId8 in the array.

 SSME-Sec-OutgoingP2pcdInfo.confirm, when a p2pcdLearningRequest for that entry is

included in a signed SPDU.

 SSME-Sec-IncomingP2pcdInfo.request, when the p2pcdLearningRequest passed via the

primitive indicates a certificate in the array.

 Optionally, after a timeout period if they have not been used to form a

p2pcdLearningRequest field.

D.4.2.1.2 Response

The SSME maintains the following state variables to support P2PCD response:

isResponseActive (p2pcdLearningRequest c, SDEE ID s):

 Type: Boolean.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

225

 Meaning: True if the SSME is in in the time-out period during which it responds no more than once

to a request c for SDEE s. False otherwise.

 Change conditions: Set to “False” on initialization. Set to “True” by SSME-Sec-IncomingP2pcd-

Info.request. Set to “False” on the expiry of the timer p2pcdResponseActiveTimer

(p2pcdLearningRequest c, SDEE ID s).

p2pcdResponseCount (p2pcdLearningRequest c, SDEE ID s):

 Type: Integer.

 Meaning: Indicates the number of responses observed to c since the start of the current response-

active period.

 Change conditions: Initialized to 0 by SSME-Sec-IncomingP2pcdInfo.request if a request is

received for a certificate that was recently used by SDEE s and if the SSME is not already considering

a response to an identical request c. Incremented by SSME-AddCertificate.request when the

certificate added by SSME-AddCertificate.request is the one indicated by c.

recentlyUsedSigningCertificates (SDEE ID s).

 Type: tuple of (CA certificate c, time added t).

 Meaning: The array of certificates which are “recently used” by the SSME, i.e., the certificates for

which the SSME sends a response if (a) they are requested and (b) the threshold condition is met.

 Change conditions: Entries are added to this array via SSME-Sec-OutgoingP2pcdInfo.request.

Entries are removed from this array once their value of t is in the past by more than

p2pcd_currentlyUsedTriggerCertificateTime.

D.4.2.2 Timers within SSME

In this example, the SSME uses timers to support P2PCD. A timer is a block of functionality supporting the

following functions:

a) Initialize: The timer is initialized with a timeout interval.

b) Re-initialize: The timeout interval for the timer is reset.

c) Expire: The timer expires, potentially causing an action to be taken by the SSME.

The SSME uses the following timers:

p2pcdRequestActiveTimer (p2pcdLearningRequest c, SDEE ID s):

 Meaning: Prevents the SSME from sending two requests within the same time interval, or from

sending a request if it knows a request to be active.

 Initialized by: SSME-Sec-IncomingP2pcdInfo.request.

 Re-initialized by: SSME-Sec-IncomingP2pcdInfo.request, SSME-Sec-OutgoingP2pcdInfo.request.

 On expiry: SSME sets isResponseActive(c, s) to “False”, allowing it to start a fresh response cycle.

p2pcdResponseBackoffTimer (p2pcdLearningRequest c, SDEE ID s):

 Meaning: Used to determine when to decide whether or not to request that a P2PCD response is sent.

 Initialized by: SSME-Sec-IncomingP2pcdInfo.request.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

226

 Re-initialized by: None.

 On expiry: SSME determines whether to send a response as specified in D.4.3.5.

p2pcdResponseActiveTimer (p2pcdLearningRequest c, SDEE ID s):

 Meaning: Prevents the SSME from sending two responses within the same time interval.

 Initialized by: SSME-Sec-IncomingP2pcdInfo.request.

 Re-initialized by: None.

 On expiry: SSME sets isResponseActive(c, s) to “False”, allowing it to start a fresh response cycle.

D.4.3 Activities within P2PCD

D.4.3.1 General

Subclase D.4.3 describes processing for the following events:

a) Receive trigger SDEE SPDUs (see D.4.3.2).

b) Send trigger SDEE SPDUs (see D.4.3.3).

c) Register for response generation service (see D.4.3.4).

d) Send P2PCD learning response (see D.4.3.5).

e) Receive P2PCD learning response (see D.4.3.6).

f) p2pcdRequestActiveTimer or p2pcdResponseActiveTimer expire (see D.4.3.7).

D.4.3.2 Receive trigger SDEE SPDUs

Receiving trigger SDEE SPDUs proceeds as follows. The flow is illustrated in Figure D.6.

a) The trigger SDEE receives a SPDU.

b) The trigger SDEE invokes the SDS via Sec-SecureDataPreprocessing.request, passing the SPDU and

its SDEE ID.

c) If the SPDU is of type signed:

1) If the SignerIdentifier in the signed SPDU indicates the selection certificate, and/or if

the HeaderInfo in the SPDU contains a p2pcdLearningRequest field, the SDS invokes SSME-

Sec-IncomingP2pcdInfo.request with the parameters:

i) SDEE ID: The SDEE ID of the trigger SDEE.

ii) Certificate: the certificates contained in the certificate field from the

SignerIdentifier within the SPDU (if present). Recall that this field may contain one or

more certificates.

iii) P2pcdLearningRequest: the p2pcdLearningRequest value from the SPDU (if

present).

d) Requester role SSME processing:

1) If the Certificate parameter was provided, then the SSME determines whether the certificates

reference an unknown certificate as follows:

i) If the issuer field in any Certificate within the parameter Certificate indicates a certificate,

Issuer, that is not known to the SSME as defined in 4.3, then:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

227

i) The SSME calculates c, the HashedId3 of Issuer.

ii) If isRequestActive(c, SDEE ID) is False, then

i) The SSME adds the HashedId8 of Issuer to queuedMissingCertIndicators

(SDEE ID).

2) If the P2pcdLearningRequest parameter was provided, then the SSME determines whether this

is a request for a certificate that the SSME is currently requesting, and if so extends the timeout

for sending a second request, as follows:

i) If the trigger certificate identified in P2pcdLearningRequest is not known to the SSME as

defined in 4.3, then:

i) If the timer p2pRequestActiveTimer (P2pcdLearningRequest, SDEE ID) is not

initialized, or is initialized and will expire in less time than

p2pcd_observedRequestTimeout(SDEE ID), the SSME initializes

(or re-initializes) that the timerwith timeout value p2pcd_observedRequest

Timeout(s).

ii) If isRequestActive is False, then the SSME sets isRequestActive

(P2pcdLearningRequest, SDEE ID) to True.

iii) If P2pcdLearningRequest corresponds to one of the entries in

queuedMissingCertIndicators (SDEE ID) as defined in 8.4.2, then the SSME

removes that entry from queuedMissingCertIndicators (SDEE ID).

e) Responder role SSME processing: If P2pcdLearningRequest parameter was provided, then the

SSME determines whether it should consider responding to the request as follows:

1) If P2pcdLearningRequest corresponds to a CA certificate stored in recentlyUsed-

SigningCertificates(SDEE ID) (where “corresponds to” is defined in 8.4.2) and if the time t

associated with that certificate in recentlyUsedSigningCertificates(SDEE ID) is within

p2pcd_currentlyUsedTriggerCertificateTime (SDEE ID) of the current time,

then:

i) If isResponseActive (p2pcdLearningRequest, SDEE ID) is “False”, then

i) The SSME sets isResponseActive (P2pcdLearningRequest, SDEE ID) to “True”.

ii) The SSME sets p2pcdResponseCount (P2pcdLearningRequest, SDEE ID) to “0”.

iii) The SSME initializes the timer p2pcdResponseBackoffTimer with expiry time

chosen randomly between 0 and p2pcd_maxResponseBackoff(SDEE ID s).

iv) The SSME initializes the timer p2pcdResponseActiveTimer with expiry time equal

to p2pcd_responseActiveTimeout(SDEE ID s).

v) Go to step f).

ii) If isResponseActive (P2pcdLearningRequest, SDEE ID) is “True”, go to step f).

2) Otherwise, go to step f).

f) The SSME confirms to the SDS that this has been carried out via SSME-Sec-IncomingP2pcd-

Info.confirm.

g) The SDS confirms to the trigger SDEE that this has been carried out via Sec-SecureDataPre-

processing.confirm.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

228

Data PlaneTrigger SDEE SSME SDS

Sec-SecureDataPreprocessing.confirm

Sec-SecureDataPreprocessing.request

Trigger SPDU

P2PCDE

SSME-Sec-
IncomingP2pcd-

Info.request

SSME-Sec-
IncomingP2pcd-

Info.confirm

Figure D.6—P2PCD operations: receiving SPDU for trigger SDEE

D.4.3.3 Send trigger SDEE SPDUs

Sending trigger SDEE SPDUs proceeds as follows. The flow is illustrated in Figure D.7.

a) The trigger SDEE invokes the SDS via Sec-SignedData.request, passing the SDEE ID.

b) The SDS invokes SSME-Sec-OutgoingP2pcdInfo.request, passing it the SDEE ID and the signing

certificate.

c) Responder role SSME processing:

1) The SSME constructs or looks up the signing certificate chain. For each CA certificate c in the

chain, the SSME uses (c, current time) to update the array

recentlyUsedSigningCertificates(SDEE ID), either by adding c if it is not present or by updating

the time associated with c if it is present.

d) Requester role SSME processing:

1) If queuedMissingCertIndicators (SDEE ID) is not empty, then the SSME creates a

p2pcdLearningRequest:

i) The SSME selects one of the entries h in queuedMissingCertIndicators (SDEE ID). This

is a HashedId8.

ii) The SSME calculates c, a HashedId3, which is the P2PCD learning request value

associated with h. This is calculated as specified in 8.4.2.

iii) The SSME removes h from queuedMissingCertIndicators (SDEE ID).

iv) The SSME sets isRequestActive(c, SDEE ID) to True.

v) The SSME initializes the timer p2pRequestActiveTimer(c, SDEE ID).

2) The SSME returns c as the p2pcdLearningRequest parameter to SSME-Sec-OutgoingP2pcd-

Info.confirm, or omits that parameter.

e) The SDS includes p2pcdLearningRequest, if it was provided, when creating the HeaderInfofor the

ToBeSignedData prior to signing, per requirement a).

f) The SDS returns the signed SPDU, including the p2pcdLearningRequest if appropriate, to the trigger

SDEE via Sec-SignedData.confirm.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

229

Data PlaneTrigger SDEE SSME SDS

Sec-SignedData.confirm

Sec-SignedData.request

Signed SPDU

P2PCDE

SSME-Sec-
OutgoingP2pcd-

Info.request

SSME-Sec-
OutgoingP2pcd-

Info.confirm

Figure D.7—P2PCD operations: sending SPDU for trigger SDEE

D.4.3.4 Register for response generation service

A P2PCD Entity registers for the P2PCD response generation service as follows. The flow is illustrated in

Figure D.8.

a) The Peer-to-peer Certificate Distribution application (P2PCDE in the figure) uses SSME-

P2pcdResponseGenerationService.request to request that the SSME notifies it when P2PCD learning

responses should be sent for requests related to a particular SDEE.

b) The SSME confirms the request via SSME-P2pcdResponseGenerationService.confirm.

Data PlaneTrigger SDEE SSME SDS

SSME-P2pcdResponseGeneration-
Service.confirm

SSME-P2pcdResponseGeneration-
Service.request

P2PCDE

Figure D.8—P2PCD operations: P2PCD Entity registers for
response generation service

D.4.3.5 Send P2PCD learning response

Sending P2PCD learning responses proceeds as follows. The flow is illustrated in Figure D.9.

a) When the timer p2pcdResponseBackoffTimer (p2pcdLearningRequest c, SDEE ID s) for any (c, s)

expires:

1) If p2pcdResponseCount (c, s) is less than or equal to p2pcd_responseCountThreshold

(s), then:

i) The SSME creates an array of certificates such that the first certificate in the array is the

requested CA certificate, the last certificate in the array was issued by a root certificate,

and each certificate in the array other than the first is the issuer of the one before it.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

230

ii) The SSME generates a notification to the P2PCD application via SSME-P2pcdResponse-

Generation.indication indicating that the P2PCD application should create and send a

P2PCD learning response containing the indicated certificates.

2) The P2PCD application creates a P2PCD application PDU per 8.4 and sends it over the data

plane.

Data PlaneTrigger SDEE SSME SDS

SSME-
P2pcdResponseGenerationService.confirm

SSME-
P2pcdResponseGenerationService.request

P2PCDE

SSME-P2pcdResponseGeneration.indication

P2PCD PDU

Figure D.9—P2PCD operations: P2PCD Entity sends response

D.4.3.6 Receive P2PCD learning response

Receiving P2PCD learning responses proceeds as follows. The flow is illustrated in Figure D.10. In order to

receive responses, the P2PCDE registers with the network stack to receive incoming data on the appropriate

TCP/IP port or WSMP PSID.

a) The P2PCDE receives a P2PCD application PDU over the data plane containing CA certificates.

b) The P2PCD provides the certificates to the SSME via SSME-AddCertificate.request, optionally

verifying them beforehand via SSME-VerifyCertificate.request.

c) For each certificate provided to the SSME:

1) The SSME calculates the corresponding HashedId8 value h8 and P2pcdLearningRequest

value clr as specified in 8.4.2.

2) The SSME removes h8 from any queuedMissingCertIndicators(s) array in which it appears,

per requirement d).

3) The SSME increments p2pcdResponseCount(c, s) by one for any instance of

p2pcdResponseCount(c, s) for which c = clr.

4) The SSME sets isRequestActive(c, s) to False for any instance of isRequestActive(c, s) for which

c = clr, per requirement d).

5) The SSME confirms the operation via SSME-AddCertificate.confirm.

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

231

Data PlaneTrigger SDEE SSME SDS

SSME-AddCertificate.confirm

SSME-AddCertificate.request

P2PCD PDU

P2PCDE

Figure D.10—P2PCD operations: P2PCD Entity receives response

D.4.3.7 p2pcdRequestActiveTimer or p2pcdResponseActiveTimer expire

The expiry of the timers p2pcdRequestActiveTimer and p2pcdResponseActiveTimer is handled internally to

the SSME and does not involve communication across an interface.

When p2pcdRequestActiveTimer(c, s) expires, the SSME sets isRequestActive(c, s) to “False”.

When p2pcdResponseActiveTimer(c, s) expires, the SSME sets isResponseActive(c, s) to “False”.

D.5 Example data structures

D.5.1 “Basic safety message” with dummy payload, signed with a digest

D.5.1.1 Description

This is an example of a SPDU, which is an Ieee1609Dot2Data, that uses the security profile for Basic Safety

Message provided in SAE J2945/1 [B21] and the PSID for “vehicle to vehicle safety and awareness”

specified in IEEE Std 1609.12. The payload is not a valid BSM but the ASCII string “This is a BSM\r\n”.

The SignerIdentifier field is of type digest. The payload is 15 bytes long and the entire SPDU is 108 bytes

long.

D.5.1.2 COER encoding

03 81 00 40 03 80 0F 54 68 69 73 20 69 73 20 61

20 42 53 4D 0D 0A 40 01 20 11 12 13 14 15 16 17

18 80 21 22 23 24 25 26 27 28 80 82 31 32 33 34

35 36 37 38 31 32 33 34 35 36 37 38 31 32 33 34

35 36 37 38 31 32 33 34 35 36 37 38 41 42 43 44

45 46 47 48 41 42 43 44 45 46 47 48 41 42 43 44

45 46 47 48 41 42 43 44 45 46 47 48

D.5.1.3 ASN.1 value notation

value1 Ieee1609Dot2Data ::= {

 protocolVersion 3,

 content signedData : {

 hashId sha256,

 tbsData {

 payload {

 data {

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

232

 protocolVersion 3,

 content unsecuredData : '5468697320697320612042534D0D0A'H

 }

 },

 headerInfo {

 psid 32,

 generationTime 1230066625199609624 -- hex: 1112131415161718

 }

 },

 signer digest : '2122232425262728'H,

 signature ecdsaNistP256Signature : {

 r compressed-y-0 :

'3132333435363738313233343536373831323334353637383132333435363738'H,

 s

'4142434445464748414243444546474841424344454647484142434445464748'H

 }

 }

}

D.5.2 “Basic safety message” with dummy payload, signed with a certificate

D.5.2.1 Description

This is an example of a SPDU, which is an Ieee1609Dot2Data, that uses the security profile for Basic Safety

Message provided in SAE J2945/1 [B21] and the PSID for “vehicle to vehicle safety and awareness”

specified in IEEE Std 1609.12. The payload is not a valid BSM but the ASCII string “This is a BSM\r\n”.

The SignerIdentifier field is of type certificate and contains a single certificate. The payload is 15 bytes

long and the entire SPDU is 207 bytes long.

D.5.2.2 COER encoding

03 81 00 40 03 80 0F 54 68 69 73 20 69 73 20 61

20 42 53 4D 0D 0A 40 01 20 11 12 13 14 15 16 17

18 81 01 01 00 03 01 80 21 22 23 24 25 26 27 28

50 80 80 00 64 31 32 33 34 35 36 37 38 39 41 42

43 44 51 52 53 54 55 56 57 58 59 61 62 63 00 46

04 E0 9A 20 84 00 A9 83 01 03 80 00 7C 80 01 E4

80 03 48 01 02 00 01 20 00 01 26 81 82 91 92 93

94 95 96 97 98 91 92 93 94 95 96 97 98 91 92 93

94 95 96 97 98 91 92 93 94 95 96 97 98 80 82 31

32 33 34 35 36 37 38 31 32 33 34 35 36 37 38 31

32 33 34 35 36 37 38 31 32 33 34 35 36 37 38 41

42 43 44 45 46 47 48 41 42 43 44 45 46 47 48 41

42 43 44 45 46 47 48 41 42 43 44 45 46 47 48

D.5.2.3 ASN.1 value notation

value1 Ieee1609Dot2Data ::= {

 protocolVersion 3,

 content signedData : {

 hashId sha256,

 tbsData {

 payload {

 data {

 protocolVersion 3,

 content unsecuredData : '5468697320697320612042534D0D0A'H

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

233

 }

 },

 headerInfo {

 psid 32,

 generationTime 1230066625199609624 -- hex: 1112131415161718

 }

 },

 signer certificate : {

 {

 version 3,

 type implicit,

 issuer sha256AndDigest : '2122232425262728'H,

 toBeSigned {

 id linkageData : {

 iCert 100,

 linkage-value '313233343536373839'H,

 group-linkage-value {

 jValue '41424344'H,

 value '515253545556575859'H

 }

 },

 cracaId '616263'H,

 crlSeries 70,

 validityPeriod {

 start 2172814212 -- hex: 81828384,

 duration hours : 169

 },

 region identifiedRegion : {

 countryOnly : 124,

 countryOnly : 484,

 countryOnly : 840

 },

 appPermissions {

 {

 psid 32

 },

 {

 psid 38

 }

 },

 verifyKeyIndicator reconstructionValue : compressed-y-0 :

'9192939495969798919293949596979891929394959697989192939495969798'H

 }

 }

 },

 signature ecdsaNistP256Signature : {

 r compressed-y-0 :

'3132333435363738313233343536373831323334353637383132333435363738'H,

 s

'4142434445464748414243444546474841424344454647484142434445464748'H

 }

 }

}

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

234

D.5.3 PsidGroupPermissions examples

 An enrollment certificate contains a certRequestPermissions field containing an instance of

this type with minChainLength equal to 0, chainLengthRange equal to 0, and eeType equal

to app (because the enrollment certificate is used to request authorization certificates).

 A certificate for a CA that directly issues end-entity certificates might contain a

certRequestPermissions field containing an instance of this type for a given PSID/SSP

combination with minChainLength equal to 1, chainLengthRange equal to 0, and eeType

equal to app. This indicates that it is entitled to issue end-entity certificates for that PSID/SSP

combination.

 A certificate for an intermediate CA might contain a certRequestPermissions field

containing an instance of this type for a given PSID/SSP combination with minChainLength

equal to 2, chainLengthRange equal to 0, and eeType equal to app. This indicates that there

must be exactly one CA in the chain between the intermediate CA and the end-entity.

 A certificate for a root CA might have an instance of this field for a given PSID/SSP combination

with minChainLength equal to 3, chainLengthRange equal to −1, and eeType equal to

(app, enroll). This indicates that there must be at least two CAs in the chain between the root CA

and the end-entity (minChainLength = 3) and that there may be any number greater than or equal

to two (chainLengthRange = −1, i.e. the length of the chain is not constrained so long as it is

greater than or equal to minChainLength).

D.5.4 Root CA Certificate Profile

This section contains an example V2X root CA certificate profile for which the following hold:

 It is self-signed (issuer = self).

 This certificate will not be revoked (cracaId of all 0s AND CrlSeries value of 0).

 This certificate is valid worldwide because region is absent and issuer is self.

 Application Permissions: There are two application-level permissions (PSIDs) associated with the

root certificate:

 Security Management (issuance of certificates).

 CRL Issuance – This root CA is also the CRACA and its certificate indicates that there is a

single CRL series associated with it.

 Issuance Permissions: This root certificate’s issuance rights are constrained as follows:

 It can issue any permissions.

 Either end entity application or enrollment certificates may chain to it.

 minChainLength is 3, universally. This means that there must be two CA layers between it

and end entity certificates no matter the PSID.

 chainLengthRange is -1, universally. This means that the certificate chain to the end

entities (from this root) may be any length equal to or greather than minChainLength which

is 3.

 For the Security Management, Misbehavior Reporting and CRL issuance PSIDs, it may issue

any permissions to a certificate directly under it (minChainLength of 1).

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

235

 SspRange values that are absent also indicate “all”, meaning any certificate permissions may

be issued from this root.

 Example Populated Variables:

 Validity Period Start: 385689600

 RootCaCertExpiration: 70 Years

 ScmsSpclComponentCrlSeries: 256

 SecurityMgmtPsid: 35

 MisbehaviorReportingPsid: 38

 CrlPsid: 256

RootCaCertificate ::= ExplicitCertificate (WITH COMPONENTS { ...,

 issuer (WITH COMPONENTS {self}), 
 toBeSigned (WITH COMPONENTS { ...,
 id (WITH COMPONENTS {

 name ("v2xrootca.ghsiss.com")

 }),

 cracaId('000000'H),

 crlSeries(0),

 validityPeriod (WITH COMPONENTS { ...,

 duration (RootCaCertExpiration)

 }),

 region ABSENT, 

 assuranceLevel ABSENT, 
 appPermissions (SequenceOfPsidSsp (SIZE(2)) (CONSTRAINED BY {

 PsidSsp (WITH COMPONENTS { 

 psid (SecurityMgmtPsid), 
 ssp --OER encoding of ScmsSsp indicating RootCaSsp
 }),

 PsidSsp (WITH COMPONENTS {

 psid (CrlPsid),

 ssp (WITH COMPONENTS {opaque(CONTAINING CrlSsp (WITH

COMPONENTS

 {...,

 associatedCraca(isCraca), 
 crls (PermissibleCrls (SIZE(1)) (CONSTRAINED BY {
 CrlSeries (ScmsSpclComponentCrlSeries

 }))

 }))})

 })

 })),

 certIssuePermissions (SequenceOfPsidGroupPermissions (SIZE(4))

 (CONSTRAINED BY {

 PsidGroupPermissions (WITH COMPONENTS {...,

 subjectPermissions (WITH COMPONENTS {all }),

 minChainLength(3),

 chainLengthRange(-1),

 eeType ({app, enroll})

 }), 
 PsidGroupPermissions (WITH COMPONENTS {...,
 subjectPermissions (WITH COMPONENTS{

 explicit (SequenceOfPsidSspRange (SIZE (1)) (WITH COMPONENT

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

236

 (WITH COMPONENTS {

 psid (SecurityMgmtPsid),

 sspRange ABSENT

 })))

 }),

 minChainLength(1),

 chainLengthRange(-1),

 eeType ({app, enroll})

 }), 
 PsidGroupPermissions (WITH COMPONENTS {...,

 subjectPermissions (WITH COMPONENTS{ explicit
(SequenceOfPsidSspRange

 (SIZE (1)) (WITH COMPONENT (WITH COMPONENTS { 
 psid (MisbehaviorReportingPsid),
 sspRange ABSENT

 })))

 }),

 minChainLength(1),

 chainLengthRange(-1),

 eeType ({app, enroll})

 }), 
 PsidGroupPermissions (WITH COMPONENTS {...,

 subjectPermissions (WITH COMPONENTS{ explicit
(SequenceOfPsidSspRange

 (SIZE (1)) (WITH COMPONENT (WITH COMPONENTS {

 psid (CrlPsid),

 sspRange (WITH COMPONENTS {all})

 })))

 }),

 minChainLength(1),

 chainLengthRange(-1),

 eeType ({app, enroll})

 })

 })),

 certRequestPermissions ABSENT,

 canRequestRollover ABSENT,

 encryptionKey ABSENT,

 verifyKeyIndicator (WITH COMPONENTS {

 verificationKey (WITH COMPONENTS {

 ecdsaNistP256 (WITH COMPONENTS {

 compressed-y-0, compressed-y-1

 })

 })

 })

 })

})

D.6 Cryptographic Test Vectors

D.6.1 AES-CCM-128

=======================================

It is based on NIST SP 800-38C (and RFC 3610) with the following:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

237

- Adata = 0, i.e. no associated authenticated data

- t=16, i.e. tag length is 16 octets

- n=12, i.e. Nonce length is 12 octets

- q=3, i.e. the message length in octets is encoded in 3 octets

Inputs:

- key: {octet string} AES-CCM key, K (hex encoded bytes)

- nonce: {octet string} nonce, N (hex encoded bytes)

- plaintext: {octet string} plaintext to be encrypted and authenticated, P (hex encoded bytes)

Output:

ciphertext || tag = C || T {octet string}

Test Vector #1:

K = 0xE58D5C8F8C9ED9785679E08ABC7C8116

 key[16] =

{ 0xE5, 0x8D, 0x5C, 0x8F, 0x8C, 0x9E, 0xD9, 0x78, 0x56, 0x79, 0xE0, 0x8A, 0xBC, 0x7C, 0x81, 0x16 }

N = 0xA9F593C09EAEEA8BF0C1CF6A

 nonce[12] =

{ 0xA9, 0xF5, 0x93, 0xC0, 0x9E, 0xAE, 0xEA, 0x8B, 0xF0, 0xC1, 0xCF, 0x6A }

P=

0x0653B5714D1357F4995BDDACBE10873951A1EBA663718D1AF35D2F0D52C79DE49BE622C4A6

D90647BA2B004C3E8AE422FD27063AFA19AD883DCCBD97D98B8B0461B5671E75F19701C24042

B8D3AF79B9FF62BC448EF9440B1EA3F7E5C0F4BFEFE3E326E62D5EE4CB4B4CFFF30AD5F49A79

81ABF71617245B96E522E1ADD78A

 pt[127] =

{ 0x06, 0x53, 0xB5, 0x71, 0x4D, 0x13, 0x57, 0xF4, 0x99, 0x5B, 0xDD, 0xAC, 0xBE, 0x10, 0x87, 0x39,

 0x51, 0xA1, 0xEB, 0xA6, 0x63, 0x71, 0x8D, 0x1A, 0xF3, 0x5D, 0x2F, 0x0D, 0x52, 0xC7, 0x9D, 0xE4,

 0x9B, 0xE6, 0x22, 0xC4, 0xA6, 0xD9, 0x06, 0x47, 0xBA, 0x2B, 0x00, 0x4C, 0x3E, 0x8A, 0xE4, 0x22,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

238

 0xFD, 0x27, 0x06, 0x3A, 0xFA, 0x19, 0xAD, 0x88, 0x3D, 0xCC, 0xBD, 0x97, 0xD9, 0x8B, 0x8B, 0x04,

 0x61, 0xB5, 0x67, 0x1E, 0x75, 0xF1, 0x97, 0x01, 0xC2, 0x40, 0x42, 0xB8, 0xD3, 0xAF, 0x79, 0xB9,

 0xFF, 0x62, 0xBC, 0x44, 0x8E, 0xF9, 0x44, 0x0B, 0x1E, 0xA3, 0xF7, 0xE5, 0xC0, 0xF4, 0xBF, 0xEF,

 0xE3, 0xE3, 0x26, 0xE6, 0x2D, 0x5E, 0xE4, 0xCB, 0x4B, 0x4C, 0xFF, 0xF3, 0x0A, 0xD5, 0xF4, 0x9A,

 0x79, 0x81, 0xAB, 0xF7, 0x16, 0x17, 0x24, 0x5B, 0x96, 0xE5, 0x22, 0xE1, 0xAD, 0xD7, 0x8A }

C_T=

0x5F82B9FCE34B94835395DD89D71FB758D2A3907FBF2FD58994A2B9CF8725AF26F0B23853C27A

06E35EE72CAD827713C18FA5DDA971D9BAA7B42A301FF60C6E4AD651C1BB6ED4F25F7D0FF38

7A11627934CD11F86984EA3AC969DDA9A020AD6424B0D393E3FB4B1119ADF5CDB012A59753E4

1D47E5E5A8C3A118ED407049B56D53BF56CB38C0B20A2502D1DA70B9761

 c_t[143] =

{ 0x5F, 0x82, 0xB9, 0xFC, 0xE3, 0x4B, 0x94, 0x83, 0x53, 0x95, 0xDD, 0x89, 0xD7, 0x1F, 0xB7, 0x58,

 0xD2, 0xA3, 0x90, 0x7F, 0xBF, 0x2F, 0xD5, 0x89, 0x94, 0xA2, 0xB9, 0xCF, 0x87, 0x25, 0xAF, 0x26,

 0xF0, 0xB2, 0x38, 0x53, 0xC2, 0x7A, 0x06, 0xE3, 0x5E, 0xE7, 0x2C, 0xAD, 0x82, 0x77, 0x13, 0xC1,

 0x8F, 0xA5, 0xDD, 0xA9, 0x71, 0xD9, 0xBA, 0xA7, 0xB4, 0x2A, 0x30, 0x1F, 0xF6, 0x0C, 0x6E, 0x4A,

 0xD6, 0x51, 0xC1, 0xBB, 0x6E, 0xD4, 0xF2, 0x5F, 0x7D, 0x0F, 0xF3, 0x87, 0xA1, 0x16, 0x27, 0x93,

 0x4C, 0xD1, 0x1F, 0x86, 0x98, 0x4E, 0xA3, 0xAC, 0x96, 0x9D, 0xDA, 0x9A, 0x02, 0x0A, 0xD6, 0x42,

 0x4B, 0x0D, 0x39, 0x3E, 0x3F, 0xB4, 0xB1, 0x11, 0x9A, 0xDF, 0x5C, 0xDB, 0x01, 0x2A, 0x59, 0x75,

 0x3E, 0x41, 0xD4, 0x7E, 0x5E, 0x5A, 0x8C, 0x3A, 0x11, 0x8E, 0xD4, 0x07, 0x04, 0x9B, 0x56, 0xD5,

 0x3B, 0xF5, 0x6C, 0xB3, 0x8C, 0x0B, 0x20, 0xA2, 0x50, 0x2D, 0x1D, 0xA7, 0x0B, 0x97, 0x61 }

Test Vector #2:

K = 0xE58D5C8F8C9ED9785679E08ABC7C8116

 key[16] =

{ 0xE5, 0x8D, 0x5C, 0x8F, 0x8C, 0x9E, 0xD9, 0x78, 0x56, 0x79, 0xE0, 0x8A, 0xBC, 0x7C, 0x81, 0x16 }

N = 0xA9F593C09EAEEA8BF0C1CF6A

 nonce[12] =

{ 0xA9, 0xF5, 0x93, 0xC0, 0x9E, 0xAE, 0xEA, 0x8B, 0xF0, 0xC1, 0xCF, 0x6A }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

239

P=

0xACA650CCCCDA604E16A8B54A3335E0BC2FD9444F33E3D9B82AFE6F445357634974F0F1728CF

113452321CBE5858304B01D4A14AE7F3B45980EE8033AD2A8599B78C29494C9E5F8945A8CADE3

EB5A30D156C0D83271626DADDB650954093443FBAC9701C02E5A973F39C2E1761A4B48C764BF6

DB215A54B285A06ECA3AF0A83F7

 pt[128] =

{ 0xAC, 0xA6, 0x50, 0xCC, 0xCC, 0xDA, 0x60, 0x4E, 0x16, 0xA8, 0xB5, 0x4A, 0x33, 0x35, 0xE0, 0xBC,

 0x2F, 0xD9, 0x44, 0x4F, 0x33, 0xE3, 0xD9, 0xB8, 0x2A, 0xFE, 0x6F, 0x44, 0x53, 0x57, 0x63, 0x49,

 0x74, 0xF0, 0xF1, 0x72, 0x8C, 0xF1, 0x13, 0x45, 0x23, 0x21, 0xCB, 0xE5, 0x85, 0x83, 0x04, 0xB0,

 0x1D, 0x4A, 0x14, 0xAE, 0x7F, 0x3B, 0x45, 0x98, 0x0E, 0xE8, 0x03, 0x3A, 0xD2, 0xA8, 0x59, 0x9B,

 0x78, 0xC2, 0x94, 0x94, 0xC9, 0xE5, 0xF8, 0x94, 0x5A, 0x8C, 0xAD, 0xE3, 0xEB, 0x5A, 0x30, 0xD1,

 0x56, 0xC0, 0xD8, 0x32, 0x71, 0x62, 0x6D, 0xAD, 0xDB, 0x65, 0x09, 0x54, 0x09, 0x34, 0x43, 0xFB,

 0xAC, 0x97, 0x01, 0xC0, 0x2E, 0x5A, 0x97, 0x3F, 0x39, 0xC2, 0xE1, 0x76, 0x1A, 0x4B, 0x48, 0xC7,

 0x64, 0xBF, 0x6D, 0xB2, 0x15, 0xA5, 0x4B, 0x28, 0x5A, 0x06, 0xEC, 0xA3, 0xAF, 0x0A, 0x83, 0xF7 }

C_T=

0xF5775C416282A339DC66B56F5A3AD0DDACDB3F96EFBD812B4D01F98686B5518B1FA4EBE5E8

5213E1C7EDE704397EF3536FC8CF3DF4FB52B7870E8EB2FD2FBCD5CF263231D2C09DCAE5C31C

DC99E36EFBE5737BF067D58A0A535B242BCBCA2A5604791E183CB0C2E5E851425E11B4E528237

F123B5DE8E349DD6D1A4506465F7257001080003872271900D3F39C9661FD

 c_t[144] =

{ 0xF5, 0x77, 0x5C, 0x41, 0x62, 0x82, 0xA3, 0x39, 0xDC, 0x66, 0xB5, 0x6F, 0x5A, 0x3A, 0xD0, 0xDD,

 0xAC, 0xDB, 0x3F, 0x96, 0xEF, 0xBD, 0x81, 0x2B, 0x4D, 0x01, 0xF9, 0x86, 0x86, 0xB5, 0x51, 0x8B,

 0x1F, 0xA4, 0xEB, 0xE5, 0xE8, 0x52, 0x13, 0xE1, 0xC7, 0xED, 0xE7, 0x04, 0x39, 0x7E, 0xF3, 0x53,

 0x6F, 0xC8, 0xCF, 0x3D, 0xF4, 0xFB, 0x52, 0xB7, 0x87, 0x0E, 0x8E, 0xB2, 0xFD, 0x2F, 0xBC, 0xD5,

 0xCF, 0x26, 0x32, 0x31, 0xD2, 0xC0, 0x9D, 0xCA, 0xE5, 0xC3, 0x1C, 0xDC, 0x99, 0xE3, 0x6E, 0xFB,

 0xE5, 0x73, 0x7B, 0xF0, 0x67, 0xD5, 0x8A, 0x0A, 0x53, 0x5B, 0x24, 0x2B, 0xCB, 0xCA, 0x2A, 0x56,

 0x04, 0x79, 0x1E, 0x18, 0x3C, 0xB0, 0xC2, 0xE5, 0xE8, 0x51, 0x42, 0x5E, 0x11, 0xB4, 0xE5, 0x28,

 0x23, 0x7F, 0x12, 0x3B, 0x5D, 0xE8, 0xE3, 0x49, 0xDD, 0x6D, 0x1A, 0x45, 0x06, 0x46, 0x5F, 0x72,

 0x57, 0x00, 0x10, 0x80, 0x00, 0x38, 0x72, 0x27, 0x19, 0x00, 0xD3, 0xF3, 0x9C, 0x96, 0x61, 0xFD }

Test Vector #3:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

240

K = 0xE58D5C8F8C9ED9785679E08ABC7C8116

 key[16] =

{ 0xE5, 0x8D, 0x5C, 0x8F, 0x8C, 0x9E, 0xD9, 0x78, 0x56, 0x79, 0xE0, 0x8A, 0xBC, 0x7C, 0x81, 0x16 }

N = 0xA9F593C09EAEEA8BF0C1CF6A

 nonce[12] =

{ 0xA9, 0xF5, 0x93, 0xC0, 0x9E, 0xAE, 0xEA, 0x8B, 0xF0, 0xC1, 0xCF, 0x6A }

P=

0xD1AA8BBC04DFC92FFE2CB7748E70B02F5A91DA14781223A712D44C4BA14A1C78EB02387FE7

3FDCBCA8447056ACAA9B5F94D5208972B706DF9FC4C803EABB2BC58C3D8DF4AC496C34CB6B

AB939478CB417995B2314DAF7AF3F4C8A8D5D57A03F0EB2B7BBD2D16BABBF22C5B1EEBFF72

C7DD4F912D5821F9A6BFA2D063CE6F6648DF

 pt[129] =

{ 0xD1, 0xAA, 0x8B, 0xBC, 0x04, 0xDF, 0xC9, 0x2F, 0xFE, 0x2C, 0xB7, 0x74, 0x8E, 0x70, 0xB0, 0x2F,

 0x5A, 0x91, 0xDA, 0x14, 0x78, 0x12, 0x23, 0xA7, 0x12, 0xD4, 0x4C, 0x4B, 0xA1, 0x4A, 0x1C, 0x78,

 0xEB, 0x02, 0x38, 0x7F, 0xE7, 0x3F, 0xDC, 0xBC, 0xA8, 0x44, 0x70, 0x56, 0xAC, 0xAA, 0x9B, 0x5F,

 0x94, 0xD5, 0x20, 0x89, 0x72, 0xB7, 0x06, 0xDF, 0x9F, 0xC4, 0xC8, 0x03, 0xEA, 0xBB, 0x2B, 0xC5,

 0x8C, 0x3D, 0x8D, 0xF4, 0xAC, 0x49, 0x6C, 0x34, 0xCB, 0x6B, 0xAB, 0x93, 0x94, 0x78, 0xCB, 0x41,

 0x79, 0x95, 0xB2, 0x31, 0x4D, 0xAF, 0x7A, 0xF3, 0xF4, 0xC8, 0xA8, 0xD5, 0xD5, 0x7A, 0x03, 0xF0,

 0xEB, 0x2B, 0x7B, 0xBD, 0x2D, 0x16, 0xBA, 0xBB, 0xF2, 0x2C, 0x5B, 0x1E, 0xEB, 0xFF, 0x72, 0xC7,

 0xDD, 0x4F, 0x91, 0x2D, 0x58, 0x21, 0xF9, 0xA6, 0xBF, 0xA2, 0xD0, 0x63, 0xCE, 0x6F, 0x66, 0x48,

 0xDF }

C_T=

0x887B8731AA870A5834E2B751E77F804ED993A1CDA44C7B34752BDA8974A82EBA805622E8839

CDC184C885CB710576CBCE657FB1AF97711F01622458BC53CCE8B3BD92B51B76C096A74241AA

CE6C1956BCA2611F35B189D547CF685AA17846A5D43C564653FFCEF6123BFF836E000DF289A8F

EEA4106C51C738C926856723BACDB3F5D0F87F7E29D94BF1B41DE8063E1071

 c_t[145] =

{ 0x88, 0x7B, 0x87, 0x31, 0xAA, 0x87, 0x0A, 0x58, 0x34, 0xE2, 0xB7, 0x51, 0xE7, 0x7F, 0x80, 0x4E,

 0xD9, 0x93, 0xA1, 0xCD, 0xA4, 0x4C, 0x7B, 0x34, 0x75, 0x2B, 0xDA, 0x89, 0x74, 0xA8, 0x2E, 0xBA,

 0x80, 0x56, 0x22, 0xE8, 0x83, 0x9C, 0xDC, 0x18, 0x4C, 0x88, 0x5C, 0xB7, 0x10, 0x57, 0x6C, 0xBC,

 0xE6, 0x57, 0xFB, 0x1A, 0xF9, 0x77, 0x11, 0xF0, 0x16, 0x22, 0x45, 0x8B, 0xC5, 0x3C, 0xCE, 0x8B,

 0x3B, 0xD9, 0x2B, 0x51, 0xB7, 0x6C, 0x09, 0x6A, 0x74, 0x24, 0x1A, 0xAC, 0xE6, 0xC1, 0x95, 0x6B,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

241

 0xCA, 0x26, 0x11, 0xF3, 0x5B, 0x18, 0x9D, 0x54, 0x7C, 0xF6, 0x85, 0xAA, 0x17, 0x84, 0x6A, 0x5D,

 0x43, 0xC5, 0x64, 0x65, 0x3F, 0xFC, 0xEF, 0x61, 0x23, 0xBF, 0xF8, 0x36, 0xE0, 0x00, 0xDF, 0x28,

 0x9A, 0x8F, 0xEE, 0xA4, 0x10, 0x6C, 0x51, 0xC7, 0x38, 0xC9, 0x26, 0x85, 0x67, 0x23, 0xBA, 0xCD,

 0xB3, 0xF5, 0xD0, 0xF8, 0x7F, 0x7E, 0x29, 0xD9, 0x4B, 0xF1, 0xB4, 0x1D, 0xE8, 0x06, 0x3E, 0x10,

 0x71 }

Test Vector #4:

K = 0xB8453A728060F8D517BACEED3829F4D9

 key[16] =

{ 0xB8, 0x45, 0x3A, 0x72, 0x80, 0x60, 0xF8, 0xD5, 0x17, 0xBA, 0xCE, 0xED, 0x38, 0x29, 0xF4, 0xD9 }

N = 0xCFBCE69C884D5BABBBAAF9A3

 nonce[12] =

{ 0xCF, 0xBC, 0xE6, 0x9C, 0x88, 0x4D, 0x5B, 0xAB, 0xBB, 0xAA, 0xF9, 0xA3 }

P=

0xF7629B73DAE85A9BCA45C42EB7FC1818DC74A60E13AE65A043E24B5A4D3AE04C273E7D6F42

710F2D223D09EB7C1315718A5A1293D482E4C45C3E852E5106AAD7B695A02C4854801A5EFE937

A6540BCE8734E8141558C3433B1D4C733DC5EF9C47B5279AA46EE3D8BD33B0950BE5C9EBDF18

BCF069B6DAF82FF1186912F0ABA

 pt[127] =

{ 0xF7, 0x62, 0x9B, 0x73, 0xDA, 0xE8, 0x5A, 0x9B, 0xCA, 0x45, 0xC4, 0x2E, 0xB7, 0xFC, 0x18, 0x18,

 0xDC, 0x74, 0xA6, 0x0E, 0x13, 0xAE, 0x65, 0xA0, 0x43, 0xE2, 0x4B, 0x5A, 0x4D, 0x3A, 0xE0, 0x4C,

 0x27, 0x3E, 0x7D, 0x6F, 0x42, 0x71, 0x0F, 0x2D, 0x22, 0x3D, 0x09, 0xEB, 0x7C, 0x13, 0x15, 0x71,

 0x8A, 0x5A, 0x12, 0x93, 0xD4, 0x82, 0xE4, 0xC4, 0x5C, 0x3E, 0x85, 0x2E, 0x51, 0x06, 0xAA, 0xD7,

 0xB6, 0x95, 0xA0, 0x2C, 0x48, 0x54, 0x80, 0x1A, 0x5E, 0xFE, 0x93, 0x7A, 0x65, 0x40, 0xBC, 0xE8,

 0x73, 0x4E, 0x81, 0x41, 0x55, 0x8C, 0x34, 0x33, 0xB1, 0xD4, 0xC7, 0x33, 0xDC, 0x5E, 0xF9, 0xC4,

 0x7B, 0x52, 0x79, 0xAA, 0x46, 0xEE, 0x3D, 0x8B, 0xD3, 0x3B, 0x09, 0x50, 0xBE, 0x5C, 0x9E, 0xBD,

 0xF1, 0x8B, 0xCF, 0x06, 0x9B, 0x6D, 0xAF, 0x82, 0xFF, 0x11, 0x86, 0x91, 0x2F, 0x0A, 0xBA }

C_T=

0xDEDE575B6EFE390F2CBB4F368A711F6CDF69ABD11AF580B2BF4029F85EB835D1ABDDB30E9

E9CF3F13CBA3BCC2E918713D218AF0D07CC614AF69892AFA986AF2D5E60EDB05D09D3B29E2A

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

242

65B543AD6F26E5D76B660FE9184906A6315CD6B5355FA291A1E90C510DF20E46C116E2180009C2

87659DB8D45CC3968049FA29F08DE5D156EDF7B0DBC84E410F292868C4BE

 c_t[143] =

{ 0xDE, 0xDE, 0x57, 0x5B, 0x6E, 0xFE, 0x39, 0x0F, 0x2C, 0xBB, 0x4F, 0x36, 0x8A, 0x71, 0x1F, 0x6C,

 0xDF, 0x69, 0xAB, 0xD1, 0x1A, 0xF5, 0x80, 0xB2, 0xBF, 0x40, 0x29, 0xF8, 0x5E, 0xB8, 0x35, 0xD1,

 0xAB, 0xDD, 0xB3, 0x0E, 0x9E, 0x9C, 0xF3, 0xF1, 0x3C, 0xBA, 0x3B, 0xCC, 0x2E, 0x91, 0x87, 0x13,

 0xD2, 0x18, 0xAF, 0x0D, 0x07, 0xCC, 0x61, 0x4A, 0xF6, 0x98, 0x92, 0xAF, 0xA9, 0x86, 0xAF, 0x2D,

 0x5E, 0x60, 0xED, 0xB0, 0x5D, 0x09, 0xD3, 0xB2, 0x9E, 0x2A, 0x65, 0xB5, 0x43, 0xAD, 0x6F, 0x26,

 0xE5, 0xD7, 0x6B, 0x66, 0x0F, 0xE9, 0x18, 0x49, 0x06, 0xA6, 0x31, 0x5C, 0xD6, 0xB5, 0x35, 0x5F,

 0xA2, 0x91, 0xA1, 0xE9, 0x0C, 0x51, 0x0D, 0xF2, 0x0E, 0x46, 0xC1, 0x16, 0xE2, 0x18, 0x00, 0x09,

 0xC2, 0x87, 0x65, 0x9D, 0xB8, 0xD4, 0x5C, 0xC3, 0x96, 0x80, 0x49, 0xFA, 0x29, 0xF0, 0x8D, 0xE5,

 0xD1, 0x56, 0xED, 0xF7, 0xB0, 0xDB, 0xC8, 0x4E, 0x41, 0x0F, 0x29, 0x28, 0x68, 0xC4, 0xBE }

Test Vector #5:

K = 0xB8453A728060F8D517BACEED3829F4D9

 key[16] = { 0xB8, 0x45, 0x3A, 0x72, 0x80, 0x60, 0xF8, 0xD5, 0x17, 0xBA, 0xCE, 0xED, 0x38, 0x29,

0xF4, 0xD9 }

N = 0xCFBCE69C884D5BABBBAAF9A3

 nonce[12] = { 0xCF, 0xBC, 0xE6, 0x9C, 0x88, 0x4D, 0x5B, 0xAB, 0xBB, 0xAA, 0xF9, 0xA3 }

P=

0x29B4013F552FBCE993544CC6605CB05C62A7894C4C99E6A12C5F9F2EE4DFBEBAD70CDD0893

542240F28BB5FBB9090332ED110ABFAE6C4C6460D916F8994136575B5A6FD8DB605FDF14CB819

77AFF7F99B5272580BF220133C691B09BADC4D1FE7125FD17FDBFC103E3F00A4D8E5A6F1E3D3

AF2A908535DE858E1CCD3DB4D1835

 pt[128] =

{ 0x29, 0xB4, 0x01, 0x3F, 0x55, 0x2F, 0xBC, 0xE9, 0x93, 0x54, 0x4C, 0xC6, 0x60, 0x5C, 0xB0, 0x5C,

 0x62, 0xA7, 0x89, 0x4C, 0x4C, 0x99, 0xE6, 0xA1, 0x2C, 0x5F, 0x9F, 0x2E, 0xE4, 0xDF, 0xBE, 0xBA,

 0xD7, 0x0C, 0xDD, 0x08, 0x93, 0x54, 0x22, 0x40, 0xF2, 0x8B, 0xB5, 0xFB, 0xB9, 0x09, 0x03, 0x32,

 0xED, 0x11, 0x0A, 0xBF, 0xAE, 0x6C, 0x4C, 0x64, 0x60, 0xD9, 0x16, 0xF8, 0x99, 0x41, 0x36, 0x57,

 0x5B, 0x5A, 0x6F, 0xD8, 0xDB, 0x60, 0x5F, 0xDF, 0x14, 0xCB, 0x81, 0x97, 0x7A, 0xFF, 0x7F, 0x99,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

243

 0xB5, 0x27, 0x25, 0x80, 0xBF, 0x22, 0x01, 0x33, 0xC6, 0x91, 0xB0, 0x9B, 0xAD, 0xC4, 0xD1, 0xFE,

 0x71, 0x25, 0xFD, 0x17, 0xFD, 0xBF, 0xC1, 0x03, 0xE3, 0xF0, 0x0A, 0x4D, 0x8E, 0x5A, 0x6F, 0x1E,

 0x3D, 0x3A, 0xF2, 0xA9, 0x08, 0x53, 0x5D, 0xE8, 0x58, 0xE1, 0xCC, 0xD3, 0xDB, 0x4D, 0x18, 0x35 }

C_T=

0x0008CD17E139DF7D75AAC7DE5DD1B72861BA849345C203B3D0FDFD8CF75D6B275BEF13694F

B9DE9CEC0C87DCEB8B9150B553B7217D22C9EACA7F017961C133ADB3AF2244CE3D0C77D41F7

7585C12AC5723BECFA7E5472D4971E346F4A72F1D65A8E62554B700F17A3E8DC20BD21EF1AA0E

3658322BEAAEA9317003B8DDB72FFDFA0834974152B95BADE2DF83D7EEC455

 c_t[144] =

{ 0x00, 0x08, 0xCD, 0x17, 0xE1, 0x39, 0xDF, 0x7D, 0x75, 0xAA, 0xC7, 0xDE, 0x5D, 0xD1, 0xB7, 0x28,

 0x61, 0xBA, 0x84, 0x93, 0x45, 0xC2, 0x03, 0xB3, 0xD0, 0xFD, 0xFD, 0x8C, 0xF7, 0x5D, 0x6B, 0x27,

 0x5B, 0xEF, 0x13, 0x69, 0x4F, 0xB9, 0xDE, 0x9C, 0xEC, 0x0C, 0x87, 0xDC, 0xEB, 0x8B, 0x91, 0x50,

 0xB5, 0x53, 0xB7, 0x21, 0x7D, 0x22, 0xC9, 0xEA, 0xCA, 0x7F, 0x01, 0x79, 0x61, 0xC1, 0x33, 0xAD,

 0xB3, 0xAF, 0x22, 0x44, 0xCE, 0x3D, 0x0C, 0x77, 0xD4, 0x1F, 0x77, 0x58, 0x5C, 0x12, 0xAC, 0x57,

 0x23, 0xBE, 0xCF, 0xA7, 0xE5, 0x47, 0x2D, 0x49, 0x71, 0xE3, 0x46, 0xF4, 0xA7, 0x2F, 0x1D, 0x65,

 0xA8, 0xE6, 0x25, 0x54, 0xB7, 0x00, 0xF1, 0x7A, 0x3E, 0x8D, 0xC2, 0x0B, 0xD2, 0x1E, 0xF1, 0xAA,

 0x0E, 0x36, 0x58, 0x32, 0x2B, 0xEA, 0xAE, 0xA9, 0x31, 0x70, 0x03, 0xB8, 0xDD, 0xB7, 0x2F, 0xFD,

 0xFA, 0x08, 0x34, 0x97, 0x41, 0x52, 0xB9, 0x5B, 0xAD, 0xE2, 0xDF, 0x83, 0xD7, 0xEE, 0xC4, 0x55 }

Test Vector #6:

K = 0xB8453A728060F8D517BACEED3829F4D9

 key[16] =

{ 0xB8, 0x45, 0x3A, 0x72, 0x80, 0x60, 0xF8, 0xD5, 0x17, 0xBA, 0xCE, 0xED, 0x38, 0x29, 0xF4, 0xD9 }

N = 0xCFBCE69C884D5BABBBAAF9A3

 nonce[12] =

{ 0xCF, 0xBC, 0xE6, 0x9C, 0x88, 0x4D, 0x5B, 0xAB, 0xBB, 0xAA, 0xF9, 0xA3 }

P=

0x1D76BDF0626A7134BEB28A90D54ED7796C4C9535465C090C4B583A8CD40EF0A3864E7C07CC

AED140DF6B9D73234E652F8FF425FC206F63DFAB7DCDBBBE30411A14695E72A2BD8C4BFB1D6

991DB4F99EEA7435E55261E37FDF57CE79DF725C810192F5E6E0331ED62EB8A72C5B9DA6DFD97

48B3D168A69BAB33319EFD1E84EF2570

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

244

 pt[129] =

{ 0x1D, 0x76, 0xBD, 0xF0, 0x62, 0x6A, 0x71, 0x34, 0xBE, 0xB2, 0x8A, 0x90, 0xD5, 0x4E, 0xD7, 0x79,

 0x6C, 0x4C, 0x95, 0x35, 0x46, 0x5C, 0x09, 0x0C, 0x4B, 0x58, 0x3A, 0x8C, 0xD4, 0x0E, 0xF0, 0xA3,

 0x86, 0x4E, 0x7C, 0x07, 0xCC, 0xAE, 0xD1, 0x40, 0xDF, 0x6B, 0x9D, 0x73, 0x23, 0x4E, 0x65, 0x2F,

 0x8F, 0xF4, 0x25, 0xFC, 0x20, 0x6F, 0x63, 0xDF, 0xAB, 0x7D, 0xCD, 0xBB, 0xBE, 0x30, 0x41, 0x1A,

 0x14, 0x69, 0x5E, 0x72, 0xA2, 0xBD, 0x8C, 0x4B, 0xFB, 0x1D, 0x69, 0x91, 0xDB, 0x4F, 0x99, 0xEE,

 0xA7, 0x43, 0x5E, 0x55, 0x26, 0x1E, 0x37, 0xFD, 0xF5, 0x7C, 0xE7, 0x9D, 0xF7, 0x25, 0xC8, 0x10,

 0x19, 0x2F, 0x5E, 0x6E, 0x03, 0x31, 0xED, 0x62, 0xEB, 0x8A, 0x72, 0xC5, 0xB9, 0xDA, 0x6D, 0xFD,

 0x97, 0x48, 0xB3, 0xD1, 0x68, 0xA6, 0x9B, 0xAB, 0x33, 0x31, 0x9E, 0xFD, 0x1E, 0x84, 0xEF, 0x25,

 0x70 }

C_T=

0x34CA71D8D67C12A0584C0188E8C3D00D6F5198EA4F07EC1EB7FA582EC78C253E0AADB26610

432D9CC1ECAF5471CCF74DD7B69862F321E65101DBDA3A46B044E0FC9C13EEB7E0DFE33BC99

F5EFDA24A2031DAB4727C7B1B87420E11F2FDCE048BC0EC862D498EDD1B36F7BA83E59EF349

A444194A4B1F68EA5AA05196187ED8ED684826C0C356A9B8EDA55BD91C2BA1022B

 c_t[145] =

{ 0x34, 0xCA, 0x71, 0xD8, 0xD6, 0x7C, 0x12, 0xA0, 0x58, 0x4C, 0x01, 0x88, 0xE8, 0xC3, 0xD0, 0x0D,

 0x6F, 0x51, 0x98, 0xEA, 0x4F, 0x07, 0xEC, 0x1E, 0xB7, 0xFA, 0x58, 0x2E, 0xC7, 0x8C, 0x25, 0x3E,

 0x0A, 0xAD, 0xB2, 0x66, 0x10, 0x43, 0x2D, 0x9C, 0xC1, 0xEC, 0xAF, 0x54, 0x71, 0xCC, 0xF7, 0x4D,

 0xD7, 0xB6, 0x98, 0x62, 0xF3, 0x21, 0xE6, 0x51, 0x01, 0xDB, 0xDA, 0x3A, 0x46, 0xB0, 0x44, 0xE0,

 0xFC, 0x9C, 0x13, 0xEE, 0xB7, 0xE0, 0xDF, 0xE3, 0x3B, 0xC9, 0x9F, 0x5E, 0xFD, 0xA2, 0x4A, 0x20,

 0x31, 0xDA, 0xB4, 0x72, 0x7C, 0x7B, 0x1B, 0x87, 0x42, 0x0E, 0x11, 0xF2, 0xFD, 0xCE, 0x04, 0x8B,

 0xC0, 0xEC, 0x86, 0x2D, 0x49, 0x8E, 0xDD, 0x1B, 0x36, 0xF7, 0xBA, 0x83, 0xE5, 0x9E, 0xF3, 0x49,

 0xA4, 0x44, 0x19, 0x4A, 0x4B, 0x1F, 0x68, 0xEA, 0x5A, 0xA0, 0x51, 0x96, 0x18, 0x7E, 0xD8, 0xED,

 0x68, 0x48, 0x26, 0xC0, 0xC3, 0x56, 0xA9, 0xB8, 0xED, 0xA5, 0x5B, 0xD9, 0x1C, 0x2B, 0xA1, 0x02,

 0x2B }

D.6.2 ECIES

=======================================

ECIES Encryption as per 1609.2,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

245

Used to wrap AES-CCM 128-bit keys

Encryption Inputs:

- R: {ec256 point} Recipient public key

- k: {octet string} AES-CCM 128-bit key to be wrapped (128 bits)

- P1: {octet string} SHA-256 hash of some defined recipient info or of an empty string (256 bits)

Encryption Outputs:

- V: {ec256 point} Sender's ephemeral public key

- C: {octet string} Ciphertext, i.e. enc(k) (128 bits)

- T: {octet string} Authentication tag, (128 bits)

The encryption output is randomised, due to the ephemeral sender's key (v,V)

In the script, for testing purpose:

- v is an optional input to ecies_enc()

- v is an output of ecies_enc() to be printed in the test vectors

Test Vector #1:

===============

Sender's ephemeral private key:

v = 0x1384C31D6982D52BCA3BED8A7E60F52FECDAB44E5C0EA166815A8159E09FFB42

 v[32] =

{ 0x13, 0x84, 0xC3, 0x1D, 0x69, 0x82, 0xD5, 0x2B, 0xCA, 0x3B, 0xED, 0x8A, 0x7E, 0x60, 0xF5, 0x2F,

 0xEC, 0xDA, 0xB4, 0x4E, 0x5C, 0x0E, 0xA1, 0x66, 0x81, 0x5A, 0x81, 0x59, 0xE0, 0x9F, 0xFB, 0x42 }

AES key to be encrypted (wrapped):

k = 0x9169155B08B07674CBADF75FB46A7B0D

 k[16] =

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

246

{ 0x91, 0x69, 0x15, 0x5B, 0x08, 0xB0, 0x76, 0x74, 0xCB, 0xAD, 0xF7, 0x5F, 0xB4, 0x6A, 0x7B, 0x0D }

Hash(RecipientInfo):

P1 = 0x9169155B08B07674CBADF75FB46A7B0D

 P1[16] =

{ 0x91, 0x69, 0x15, 0x5B, 0x08, 0xB0, 0x76, 0x74, 0xCB, 0xAD, 0xF7, 0x5F, 0xB4, 0x6A, 0x7B, 0x0D }

Recipient's private key (Decryption input):

r = 0x060E41440A4E35154CA0EFCB52412145836AD032833E6BC781E533BF14851085

 r[32] =

{ 0x06, 0x0E, 0x41, 0x44, 0x0A, 0x4E, 0x35, 0x15, 0x4C, 0xA0, 0xEF, 0xCB, 0x52, 0x41, 0x21, 0x45,

 0x83, 0x6A, 0xD0, 0x32, 0x83, 0x3E, 0x6B, 0xC7, 0x81, 0xE5, 0x33, 0xBF, 0x14, 0x85, 0x10, 0x85 }

Recipient's public key (x-coordinate):

Rx = 0x8C5E20FE31935F6FA682A1F6D46E4468534FFEA1A698B14B0B12513EED8DEB11

 Rx[32] =

{ 0x8C, 0x5E, 0x20, 0xFE, 0x31, 0x93, 0x5F, 0x6F, 0xA6, 0x82, 0xA1, 0xF6, 0xD4, 0x6E, 0x44, 0x68,

 0x53, 0x4F, 0xFE, 0xA1, 0xA6, 0x98, 0xB1, 0x4B, 0x0B, 0x12, 0x51, 0x3E, 0xED, 0x8D, 0xEB, 0x11 }

Recipient's public key (y-coordinate):

Ry = 0x1270FEC2427E6A154DFCAE3368584396C8251A04E2AE7D87B016FF65D22D6F9E

 Ry[32] =

{ 0x12, 0x70, 0xFE, 0xC2, 0x42, 0x7E, 0x6A, 0x15, 0x4D, 0xFC, 0xAE, 0x33, 0x68, 0x58, 0x43, 0x96,

 0xC8, 0x25, 0x1A, 0x04, 0xE2, 0xAE, 0x7D, 0x87, 0xB0, 0x16, 0xFF, 0x65, 0xD2, 0x2D, 0x6F, 0x9E }

Encryption Output:

Sender's ephemeral public key (x-coordinate):

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

247

Vx = 0xF45A99137B1BB2C150D6D8CF7292CA07DA68C003DAA766A9AF7F67F5EE916828

 Vx[32] =

{ 0xF4, 0x5A, 0x99, 0x13, 0x7B, 0x1B, 0xB2, 0xC1, 0x50, 0xD6, 0xD8, 0xCF, 0x72, 0x92, 0xCA, 0x07,

 0xDA, 0x68, 0xC0, 0x03, 0xDA, 0xA7, 0x66, 0xA9, 0xAF, 0x7F, 0x67, 0xF5, 0xEE, 0x91, 0x68, 0x28 }

Sender's ephemeral public key (y-coordinate):

Vy = 0xF6A25216F44CB64A96C229AE00B479857B3B81C1319FB2ADF0E8DB2681769729

 Vx[32] =

{ 0xF6, 0xA2, 0x52, 0x16, 0xF4, 0x4C, 0xB6, 0x4A, 0x96, 0xC2, 0x29, 0xAE, 0x00, 0xB4, 0x79, 0x85,

 0x7B, 0x3B, 0x81, 0xC1, 0x31, 0x9F, 0xB2, 0xAD, 0xF0, 0xE8, 0xDB, 0x26, 0x81, 0x76, 0x97, 0x29 }

Encrypted (wrapped) AES key:

C = 0xA6342013D623AD6C5F6882469673AE33

 C[16] =

{ 0xA6, 0x34, 0x20, 0x13, 0xD6, 0x23, 0xAD, 0x6C, 0x5F, 0x68, 0x82, 0x46, 0x96, 0x73, 0xAE, 0x33 }

Authentication tag:

T = 0x80e1d85d30f1bae4ecf1a534a89a0786

 T[16] =

{ 0x80, 0xE1, 0xD8, 0x5D, 0x30, 0xF1, 0xBA, 0xE4, 0xEC, 0xF1, 0xA5, 0x34, 0xA8, 0x9A, 0x07, 0x86 }

Test Vector #2:

===============

Sender's ephemeral private key:

v = 0xD418760F0CB2DCB856BC3C7217AD3AA36DB6742AE1DB655A3D28DF88CBBF84E1

 v[32] =

{ 0xD4, 0x18, 0x76, 0x0F, 0x0C, 0xB2, 0xDC, 0xB8, 0x56, 0xBC, 0x3C, 0x72, 0x17, 0xAD, 0x3A, 0xA3,

 0x6D, 0xB6, 0x74, 0x2A, 0xE1, 0xDB, 0x65, 0x5A, 0x3D, 0x28, 0xDF, 0x88, 0xCB, 0xBF, 0x84, 0xE1 }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

248

AES key to be encrypted (wrapped):

k = 0x9169155B08B07674CBADF75FB46A7B0D

 k[16] =

{ 0x91, 0x69, 0x15, 0x5B, 0x08, 0xB0, 0x76, 0x74, 0xCB, 0xAD, 0xF7, 0x5F, 0xB4, 0x6A, 0x7B, 0x0D }

Hash(RecipientInfo):

P1 = 0x9169155B08B07674CBADF75FB46A7B0D

 P1[16] =

{ 0x91, 0x69, 0x15, 0x5B, 0x08, 0xB0, 0x76, 0x74, 0xCB, 0xAD, 0xF7, 0x5F, 0xB4, 0x6A, 0x7B, 0x0D }

Recipient's private key (Decryption input):

r = 0x060E41440A4E35154CA0EFCB52412145836AD032833E6BC781E533BF14851085

 r[32] =

{ 0x06, 0x0E, 0x41, 0x44, 0x0A, 0x4E, 0x35, 0x15, 0x4C, 0xA0, 0xEF, 0xCB, 0x52, 0x41, 0x21, 0x45,

 0x83, 0x6A, 0xD0, 0x32, 0x83, 0x3E, 0x6B, 0xC7, 0x81, 0xE5, 0x33, 0xBF, 0x14, 0x85, 0x10, 0x85 }

Recipient's public key (x-coordinate):

Rx = 0x8C5E20FE31935F6FA682A1F6D46E4468534FFEA1A698B14B0B12513EED8DEB11

 Rx[32] =

{ 0x8C, 0x5E, 0x20, 0xFE, 0x31, 0x93, 0x5F, 0x6F, 0xA6, 0x82, 0xA1, 0xF6, 0xD4, 0x6E, 0x44, 0x68,

 0x53, 0x4F, 0xFE, 0xA1, 0xA6, 0x98, 0xB1, 0x4B, 0x0B, 0x12, 0x51, 0x3E, 0xED, 0x8D, 0xEB, 0x11 }

Recipient's public key (y-coordinate):

Ry = 0x1270FEC2427E6A154DFCAE3368584396C8251A04E2AE7D87B016FF65D22D6F9E

 Ry[32] =

{ 0x12, 0x70, 0xFE, 0xC2, 0x42, 0x7E, 0x6A, 0x15, 0x4D, 0xFC, 0xAE, 0x33, 0x68, 0x58, 0x43, 0x96,

 0xC8, 0x25, 0x1A, 0x04, 0xE2, 0xAE, 0x7D, 0x87, 0xB0, 0x16, 0xFF, 0x65, 0xD2, 0x2D, 0x6F, 0x9E }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

249

Encryption Output:

Sender's ephemeral public key (x-coordinate):

Vx = 0xEE9CC7FBD9EDECEA41F7C8BD258E8D2E988E75BD069ADDCA1E5A38E534AC6818

 Vx[32] =

{ 0xEE, 0x9C, 0xC7, 0xFB, 0xD9, 0xED, 0xEC, 0xEA, 0x41, 0xF7, 0xC8, 0xBD, 0x25, 0x8E, 0x8D, 0x2E,

 0x98, 0x8E, 0x75, 0xBD, 0x06, 0x9A, 0xDD, 0xCA, 0x1E, 0x5A, 0x38, 0xE5, 0x34, 0xAC, 0x68, 0x18 }

Sender's ephemeral public key (y-coordinate):

Vy = 0x5AE3C8D9FE0B1FC7438F29417C240F8BF81C358EC1A4D0C6E98D8EDBCC714017

 Vx[32] =

{ 0x5A, 0xE3, 0xC8, 0xD9, 0xFE, 0x0B, 0x1F, 0xC7, 0x43, 0x8F, 0x29, 0x41, 0x7C, 0x24, 0x0F, 0x8B,

 0xF8, 0x1C, 0x35, 0x8E, 0xC1, 0xA4, 0xD0, 0xC6, 0xE9, 0x8D, 0x8E, 0xDB, 0xCC, 0x71, 0x40, 0x17 }

Encrypted (wrapped) AES key:

C = 0xDD530BE3BCD149E881E09F06E160F5A0

 C[16] =

{ 0xDD, 0x53, 0x0B, 0xE3, 0xBC, 0xD1, 0x49, 0xE8, 0x81, 0xE0, 0x9F, 0x06, 0xE1, 0x60, 0xF5, 0xA0 }

Authentication tag:

T = 0x06c1f0f5eaed453caf78e01a3d16a001

 T[16] =

{ 0x06, 0xC1, 0xF0, 0xF5, 0xEA, 0xED, 0x45, 0x3C, 0xAF, 0x78, 0xE0, 0x1A, 0x3D, 0x16, 0xA0, 0x01 }

Test Vector #3:

===============

Sender's ephemeral private key:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

250

v = 0x1384C31D6982D52BCA3BED8A7E60F52FECDAB44E5C0EA166815A8159E09FFB42

 v[32] =

{ 0x13, 0x84, 0xC3, 0x1D, 0x69, 0x82, 0xD5, 0x2B, 0xCA, 0x3B, 0xED, 0x8A, 0x7E, 0x60, 0xF5, 0x2F,

 0xEC, 0xDA, 0xB4, 0x4E, 0x5C, 0x0E, 0xA1, 0x66, 0x81, 0x5A, 0x81, 0x59, 0xE0, 0x9F, 0xFB, 0x42 }

AES key to be encrypted (wrapped):

k = 0x687E9757DEBFD87B0C267330C183C7B6

 k[16] =

{ 0x68, 0x7E, 0x97, 0x57, 0xDE, 0xBF, 0xD8, 0x7B, 0x0C, 0x26, 0x73, 0x30, 0xC1, 0x83, 0xC7, 0xB6 }

Hash(RecipientInfo):

P1 = 0x687E9757DEBFD87B0C267330C183C7B6

 P1[16] =

{ 0x68, 0x7E, 0x97, 0x57, 0xDE, 0xBF, 0xD8, 0x7B, 0x0C, 0x26, 0x73, 0x30, 0xC1, 0x83, 0xC7, 0xB6 }

Recipient's private key (Decryption input):

r = 0xDA5E1D853FCC5D0C162A245B9F29D38EB6059F0DB172FB7FDA6663B925E8C744

 r[32] =

{ 0xDA, 0x5E, 0x1D, 0x85, 0x3F, 0xCC, 0x5D, 0x0C, 0x16, 0x2A, 0x24, 0x5B, 0x9F, 0x29, 0xD3, 0x8E,

 0xB6, 0x05, 0x9F, 0x0D, 0xB1, 0x72, 0xFB, 0x7F, 0xDA, 0x66, 0x63, 0xB9, 0x25, 0xE8, 0xC7, 0x44 }

Recipient's public key (x-coordinate):

Rx = 0x8008B06FC4C9F9856048DA186E7DC390963D6A424E80B274FB75D12188D7D73F

 Rx[32] =

{ 0x80, 0x08, 0xB0, 0x6F, 0xC4, 0xC9, 0xF9, 0x85, 0x60, 0x48, 0xDA, 0x18, 0x6E, 0x7D, 0xC3, 0x90,

 0x96, 0x3D, 0x6A, 0x42, 0x4E, 0x80, 0xB2, 0x74, 0xFB, 0x75, 0xD1, 0x21, 0x88, 0xD7, 0xD7, 0x3F }

Recipient's public key (y-coordinate):

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

251

Ry = 0x2774FB9600F27D7B3BBB2F7FCD8D2C96D4619EF9B4692C6A7C5733B5BAC8B27D

 Ry[32] =

{ 0x27, 0x74, 0xFB, 0x96, 0x00, 0xF2, 0x7D, 0x7B, 0x3B, 0xBB, 0x2F, 0x7F, 0xCD, 0x8D, 0x2C, 0x96,

 0xD4, 0x61, 0x9E, 0xF9, 0xB4, 0x69, 0x2C, 0x6A, 0x7C, 0x57, 0x33, 0xB5, 0xBA, 0xC8, 0xB2, 0x7D }

Encryption Output:

Sender's ephemeral public key (x-coordinate):

Vx = 0xF45A99137B1BB2C150D6D8CF7292CA07DA68C003DAA766A9AF7F67F5EE916828

 Vx[32] =

{ 0xF4, 0x5A, 0x99, 0x13, 0x7B, 0x1B, 0xB2, 0xC1, 0x50, 0xD6, 0xD8, 0xCF, 0x72, 0x92, 0xCA, 0x07,

 0xDA, 0x68, 0xC0, 0x03, 0xDA, 0xA7, 0x66, 0xA9, 0xAF, 0x7F, 0x67, 0xF5, 0xEE, 0x91, 0x68, 0x28 }

Sender's ephemeral public key (y-coordinate):

Vy = 0xF6A25216F44CB64A96C229AE00B479857B3B81C1319FB2ADF0E8DB2681769729

 Vx[32] =

{ 0xF6, 0xA2, 0x52, 0x16, 0xF4, 0x4C, 0xB6, 0x4A, 0x96, 0xC2, 0x29, 0xAE, 0x00, 0xB4, 0x79, 0x85,

 0x7B, 0x3B, 0x81, 0xC1, 0x31, 0x9F, 0xB2, 0xAD, 0xF0, 0xE8, 0xDB, 0x26, 0x81, 0x76, 0x97, 0x29 }

Encrypted (wrapped) AES key:

C = 0x1F6346EDAEAF57561FC9604FEBEFF44E

 C[16] =

{ 0x1F, 0x63, 0x46, 0xED, 0xAE, 0xAF, 0x57, 0x56, 0x1F, 0xC9, 0x60, 0x4F, 0xEB, 0xEF, 0xF4, 0x4E }

Authentication tag:

T = 0x373c0fa7c52a0798ec36eadfe387c3ef

 T[16] =

{ 0x37, 0x3C, 0x0F, 0xA7, 0xC5, 0x2A, 0x07, 0x98, 0xEC, 0x36, 0xEA, 0xDF, 0xE3, 0x87, 0xC3, 0xEF }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

252

Test Vector #4:

===============

Sender's ephemeral private key:

v = 0x4624A6F9F6BC6BD088A71ED97B3AEE983B5CC2F574F64E96A531D2464137049F

 v[32] =

{ 0x46, 0x24, 0xA6, 0xF9, 0xF6, 0xBC, 0x6B, 0xD0, 0x88, 0xA7, 0x1E, 0xD9, 0x7B, 0x3A, 0xEE, 0x98,

 0x3B, 0x5C, 0xC2, 0xF5, 0x74, 0xF6, 0x4E, 0x96, 0xA5, 0x31, 0xD2, 0x46, 0x41, 0x37, 0x04, 0x9F }

AES key to be encrypted (wrapped):

k = 0x687E9757DEBFD87B0C267330C183C7B6

 k[16] =

{ 0x68, 0x7E, 0x97, 0x57, 0xDE, 0xBF, 0xD8, 0x7B, 0x0C, 0x26, 0x73, 0x30, 0xC1, 0x83, 0xC7, 0xB6 }

Hash(RecipientInfo):

P1 = 0x687E9757DEBFD87B0C267330C183C7B6

 P1[16] =

{ 0x68, 0x7E, 0x97, 0x57, 0xDE, 0xBF, 0xD8, 0x7B, 0x0C, 0x26, 0x73, 0x30, 0xC1, 0x83, 0xC7, 0xB6 }

Recipient's private key (Decryption input):

r = 0xDA5E1D853FCC5D0C162A245B9F29D38EB6059F0DB172FB7FDA6663B925E8C744

 r[32] =

{ 0xDA, 0x5E, 0x1D, 0x85, 0x3F, 0xCC, 0x5D, 0x0C, 0x16, 0x2A, 0x24, 0x5B, 0x9F, 0x29, 0xD3, 0x8E,

 0xB6, 0x05, 0x9F, 0x0D, 0xB1, 0x72, 0xFB, 0x7F, 0xDA, 0x66, 0x63, 0xB9, 0x25, 0xE8, 0xC7, 0x44 }

Recipient's public key (x-coordinate):

Rx = 0x8008B06FC4C9F9856048DA186E7DC390963D6A424E80B274FB75D12188D7D73F

 Rx[32] =

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

253

{ 0x80, 0x08, 0xB0, 0x6F, 0xC4, 0xC9, 0xF9, 0x85, 0x60, 0x48, 0xDA, 0x18, 0x6E, 0x7D, 0xC3, 0x90,

 0x96, 0x3D, 0x6A, 0x42, 0x4E, 0x80, 0xB2, 0x74, 0xFB, 0x75, 0xD1, 0x21, 0x88, 0xD7, 0xD7, 0x3F }

Recipient's public key (y-coordinate):

Ry = 0x2774FB9600F27D7B3BBB2F7FCD8D2C96D4619EF9B4692C6A7C5733B5BAC8B27D

 Ry[32] =

{ 0x27, 0x74, 0xFB, 0x96, 0x00, 0xF2, 0x7D, 0x7B, 0x3B, 0xBB, 0x2F, 0x7F, 0xCD, 0x8D, 0x2C, 0x96,

 0xD4, 0x61, 0x9E, 0xF9, 0xB4, 0x69, 0x2C, 0x6A, 0x7C, 0x57, 0x33, 0xB5, 0xBA, 0xC8, 0xB2, 0x7D }

Encryption Output:

Sender's ephemeral public key (x-coordinate):

Vx = 0x121AA495C6B2C07A2B2DAEC36BD207D6620D7E6081050DF5DE3E9696868FCDCA

 Vx[32] =

{ 0x12, 0x1A, 0xA4, 0x95, 0xC6, 0xB2, 0xC0, 0x7A, 0x2B, 0x2D, 0xAE, 0xC3, 0x6B, 0xD2, 0x07, 0xD6,

 0x62, 0x0D, 0x7E, 0x60, 0x81, 0x05, 0x0D, 0xF5, 0xDE, 0x3E, 0x96, 0x96, 0x86, 0x8F, 0xCD, 0xCA }

Sender's ephemeral public key (y-coordinate):

Vy = 0x46C31A1ABEA0BDDAAAAEFBBA3AFDBFF1AC8D196BC313FC130926810C05503950

 Vx[32] =

{ 0x46, 0xC3, 0x1A, 0x1A, 0xBE, 0xA0, 0xBD, 0xDA, 0xAA, 0xAE, 0xFB, 0xBA, 0x3A, 0xFD, 0xBF,

0xF1,

 0xAC, 0x8D, 0x19, 0x6B, 0xC3, 0x13, 0xFC, 0x13, 0x09, 0x26, 0x81, 0x0C, 0x05, 0x50, 0x39, 0x50 }

Encrypted (wrapped) AES key:

C = 0x6CFD13B76436CD0DB70244FAE380CBA1

 C[16] =

{ 0x6C, 0xFD, 0x13, 0xB7, 0x64, 0x36, 0xCD, 0x0D, 0xB7, 0x02, 0x44, 0xFA, 0xE3, 0x80, 0xCB, 0xA1 }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

254

Authentication tag:

T = 0xc8bf18ac796b0b1d3a1256d3a91676c8

 T[16] =

{ 0xC8, 0xBF, 0x18, 0xAC, 0x79, 0x6B, 0x0B, 0x1D, 0x3A, 0x12, 0x56, 0xD3, 0xA9, 0x16, 0x76, 0xC8 }

D.6.3 MAC1

Test vectors for MAC1 with SHA-256 (i.e., HMAC-SHA-256)

===

Inputs: authentication key (K), message to be authenticated (M)

Output: Tag (T) of size 128 bits, i.e. 16 octets

Test Vector #1:

K = 0x0b

 key[20] =

{ 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B,

 0x0B, 0x0B, 0x0B, 0x0B }

M = 0x4869205468657265

 msg[8] =

{ 0x48, 0x69, 0x20, 0x54, 0x68, 0x65, 0x72, 0x65 }

T = 0xb0344c61d8db38535ca8afceaf0bf12b

 tag[16] =

{ 0xB0, 0x34, 0x4C, 0x61, 0xD8, 0xDB, 0x38, 0x53, 0x5C, 0xA8, 0xAF, 0xCE, 0xAF, 0x0B, 0xF1, 0x2B }

Test Vector #2:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

255

K = 0x4a656665

 key[4] =

{ 0x4A, 0x65, 0x66, 0x65 }

M = 0x7768617420646f2079612077616e7420666f72206e6f7468696e673f

 msg[28] =

{ 0x77, 0x68, 0x61, 0x74, 0x20, 0x64, 0x6F, 0x20, 0x79, 0x61, 0x20, 0x77, 0x61, 0x6E, 0x74, 0x20,

 0x66, 0x6F, 0x72, 0x20, 0x6E, 0x6F, 0x74, 0x68, 0x69, 0x6E, 0x67, 0x3F }

T = 0x5bdcc146bf60754e6a042426089575c7

 tag[16] =

{ 0x5B, 0xDC, 0xC1, 0x46, 0xBF, 0x60, 0x75, 0x4E, 0x6A, 0x04, 0x24, 0x26, 0x08, 0x95, 0x75, 0xC7 }

Test Vector #3:

K = 0xaa

 key[20] =

{ 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA }

M=

0xdd

dddddddddddddddd

 msg[50] =

{ 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,

0xDD, 0xDD,

 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,

0xDD, 0xDD,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

256

 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,

0xDD, 0xDD,

 0xDD, 0xDD }

T = 0x773ea91e36800e46854db8ebd09181a7

 tag[16] =

{ 0x77, 0x3E, 0xA9, 0x1E, 0x36, 0x80, 0x0E, 0x46, 0x85, 0x4D, 0xB8, 0xEB, 0xD0, 0x91, 0x81, 0xA7 }

Test Vector #4:

K = 0x0102030405060708090a0b0c0d0e0f10111213141516171819

 key[25] =

{ 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,

 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19 }

M=

0xcdc

dcdcdcdcdcd

 msg[50] =

{ 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD,

0xCD,

 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD,

0xCD,

 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD, 0xCD,

0xCD,

 0xCD, 0xCD }

T = 0x82558a389a443c0ea4cc819899f2083a

 tag[16] =

{ 0x82, 0x55, 0x8A, 0x38, 0x9A, 0x44, 0x3C, 0x0E, 0xA4, 0xCC, 0x81, 0x98, 0x99, 0xF2, 0x08, 0x3A }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

257

Test Vector #5:

K = 0x0c

 key[20] =

{ 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C,

 0x0C, 0x0C, 0x0C, 0x0C }

M = 0x546573742057697468205472756e636174696f6e

 msg[20] =

{ 0x54, 0x65, 0x73, 0x74, 0x20, 0x57, 0x69, 0x74, 0x68, 0x20, 0x54, 0x72, 0x75, 0x6E, 0x63, 0x61,

 0x74, 0x69, 0x6F, 0x6E }

T = 0xa3b6167473100ee06e0c796c2955552b

 tag[16] =

{ 0xA3, 0xB6, 0x16, 0x74, 0x73, 0x10, 0x0E, 0xE0, 0x6E, 0x0C, 0x79, 0x6C, 0x29, 0x55, 0x55, 0x2B }

Test Vector #6:

K=

0xaaa

aaa

aa

 key[131] =

{ 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

258

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA }

M=

0x54657374205573696e67204c6172676572205468616e20426c6f636b2d53697a65204b6579202d2048617

368204b6579204669727374

 msg[54] =

{ 0x54, 0x65, 0x73, 0x74, 0x20, 0x55, 0x73, 0x69, 0x6E, 0x67, 0x20, 0x4C, 0x61, 0x72, 0x67, 0x65,

 0x72, 0x20, 0x54, 0x68, 0x61, 0x6E, 0x20, 0x42, 0x6C, 0x6F, 0x63, 0x6B, 0x2D, 0x53, 0x69, 0x7A,

 0x65, 0x20, 0x4B, 0x65, 0x79, 0x20, 0x2D, 0x20, 0x48, 0x61, 0x73, 0x68, 0x20, 0x4B, 0x65, 0x79,

 0x20, 0x46, 0x69, 0x72, 0x73, 0x74 }

T = 0x60e431591ee0b67f0d8a26aacbf5b77f

 tag[16] =

{ 0x60, 0xE4, 0x31, 0x59, 0x1E, 0xE0, 0xB6, 0x7F, 0x0D, 0x8A, 0x26, 0xAA, 0xCB, 0xF5, 0xB7, 0x7F }

Test Vector #7:

K=

0xaaa

aaa

aa

 key[131] =

{ 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

259

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,

0xAA, 0xAA,

 0xAA, 0xAA, 0xAA }

M =

0x5468697320697320612074657374207573696e672061206c6172676572207468616e20626c6f636b2d736

97a65206b657920616e642061206c6172676572207468616e20626c6f636b2d73697a6520646174612e2054

6865206b6579206e6565647320746f20626520686173686564206265666f7265206265696e6720757365642

062792074686520484d414320616c676f726974686d2e

 msg[152] =

{ 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x74, 0x65, 0x73, 0x74, 0x20, 0x75,

 0x73, 0x69, 0x6E, 0x67, 0x20, 0x61, 0x20, 0x6C, 0x61, 0x72, 0x67, 0x65, 0x72, 0x20, 0x74, 0x68,

 0x61, 0x6E, 0x20, 0x62, 0x6C, 0x6F, 0x63, 0x6B, 0x2D, 0x73, 0x69, 0x7A, 0x65, 0x20, 0x6B, 0x65,

 0x79, 0x20, 0x61, 0x6E, 0x64, 0x20, 0x61, 0x20, 0x6C, 0x61, 0x72, 0x67, 0x65, 0x72, 0x20, 0x74,

 0x68, 0x61, 0x6E, 0x20, 0x62, 0x6C, 0x6F, 0x63, 0x6B, 0x2D, 0x73, 0x69, 0x7A, 0x65, 0x20, 0x64,

 0x61, 0x74, 0x61, 0x2E, 0x20, 0x54, 0x68, 0x65, 0x20, 0x6B, 0x65, 0x79, 0x20, 0x6E, 0x65, 0x65,

 0x64, 0x73, 0x20, 0x74, 0x6F, 0x20, 0x62, 0x65, 0x20, 0x68, 0x61, 0x73, 0x68, 0x65, 0x64, 0x20,

 0x62, 0x65, 0x66, 0x6F, 0x72, 0x65, 0x20, 0x62, 0x65, 0x69, 0x6E, 0x67, 0x20, 0x75, 0x73, 0x65,

 0x64, 0x20, 0x62, 0x79, 0x20, 0x74, 0x68, 0x65, 0x20, 0x48, 0x4D, 0x41, 0x43, 0x20, 0x61, 0x6C,

 0x67, 0x6F, 0x72, 0x69, 0x74, 0x68, 0x6D, 0x2E }

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

260

T = 0x9b09ffa71b942fcb27635fbcd5b0e944

 tag[16] =

{ 0x9B, 0x09, 0xFF, 0xA7, 0x1B, 0x94, 0x2F, 0xCB, 0x27, 0x63, 0x5F, 0xBC, 0xD5, 0xB0, 0xE9, 0x44 }

D.6.4 KDF2

=====================

Inputs: shared secret (ss), key derivation parameter (kdp), desired octet string length (dl)

Output: derived key of length dl octets

Test Vector #1:

ss = 0x96c05619d56c328ab95fe84b18264b08725b85e33fd34f08

 ss[24] =

{ 0x96, 0xC0, 0x56, 0x19, 0xD5, 0x6C, 0x32, 0x8A, 0xB9, 0x5F, 0xE8, 0x4B, 0x18, 0x26, 0x4B, 0x08,

 0x72, 0x5B, 0x85, 0xE3, 0x3F, 0xD3, 0x4F, 0x08 }

kdp = ""

dl = 16 octets

Test Vector #2:

ss = 0x96f600b73ad6ac5629577eced51743dd2c24c21b1ac83ee4

 ss[24] =

{ 0x96, 0xF6, 0x00, 0xB7, 0x3A, 0xD6, 0xAC, 0x56, 0x29, 0x57, 0x7E, 0xCE, 0xD5, 0x17, 0x43, 0xDD,

 0x2C, 0x24, 0xC2, 0x1B, 0x1A, 0xC8, 0x3E, 0xE4 }

kdp = ""

dl = 16 octets

Test Vector #3:

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

261

ss = 0x22518b10e70f2a3f243810ae3254139efbee04aa57c7af7d

 ss[24] =

{ 0x22, 0x51, 0x8B, 0x10, 0xE7, 0x0F, 0x2A, 0x3F, 0x24, 0x38, 0x10, 0xAE, 0x32, 0x54, 0x13, 0x9E,

 0xFB, 0xEE, 0x04, 0xAA, 0x57, 0xC7, 0xAF, 0x7D }

kdp = 0x75eef81aa3041e33b80971203d2c0c52

 kdp[16] =

{ 0x75, 0xEE, 0xF8, 0x1A, 0xA3, 0x04, 0x1E, 0x33, 0xB8, 0x09, 0x71, 0x20, 0x3D, 0x2C, 0x0C, 0x52 }

dl = 128 octets

Test Vector #4:

ss = 0x7e335afa4b31d772c0635c7b0e06f26fcd781df947d2990a

 ss[24] =

{ 0x7E, 0x33, 0x5A, 0xFA, 0x4B, 0x31, 0xD7, 0x72, 0xC0, 0x63, 0x5C, 0x7B, 0x0E, 0x06, 0xF2, 0x6F,

 0xCD, 0x78, 0x1D, 0xF9, 0x47, 0xD2, 0x99, 0x0A }

kdp = 0xd65a4812733f8cdbcdfb4b2f4c191d87

 kdp[16] =

{ 0xD6, 0x5A, 0x48, 0x12, 0x73, 0x3F, 0x8C, 0xDB, 0xCD, 0xFB, 0x4B, 0x2F, 0x4C, 0x19, 0x1D, 0x87 }

dl = 128 octets

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

262

Annex E

(informative)

Deployment considerations

The services specified in this standard do not provide a complete security system. The following aspects

should also be considered when a system based on this standard is to be deployed.

 Other communications models: If two peer processes’ security requirements are best met by secure

sessions, rather than individual message security, what mechanism should be used to achieve this?

 Privacy protection: The IEEE 1609.2 design allows a device to protect privacy by changing its

certificate. What other steps should a device take to protect privacy? For example, should it change

other identifiers in the stack? Should it take steps to protect against an eavesdropper associating two

different applications hosted on the same device? How often should it change certificates and other

identifiers? The Preciosa Project has provided additional material for consideration on this topic

[B19].

 Root certificate authority (CA) certificate management: Should the system support multiple root

CA instances, or root CA certificate rollover? How is this implemented if so?

 Certificate management: How do devices that use IEEE 1609.2 certificates obtain them? See

Whyte, et al. [B24] for a proposed design at the architecture rather than protocol specification level.

 Peer-to-peer certificate distribution (P2PCD) over WAVE Short Message Protocol (WSMP):

Which channel is used for P2PCD learning responses? It makes sense for this to be in general the

same channel as is used for secured protocol data units (SPDUs) from the trigger secure data

exchange entity (SDEE).

 Other scenarios for P2PCD: The P2PCD mechanism specified in Clause 8 relies on both the

requesting and the responding device being able to send SPDUs for the trigger SDEE. This will not

always be the case—for example, cars can receive signed signal phase and timing messages from

traffic signals but cannot send them. How does the system address these scenarios?

 Cryptomaterial management: How is cryptomaterial protected on the device? How do application

instances that make use of cryptomaterial reference that cryptomaterial? How does the device prevent

access to cryptomaterial by unauthorized processes? See the SeVeCom report [B22] for additional

discussion on this and other security topics.

 Certificate revocation list (CRL) distribution: How are CRLs delivered to the CRL Verification

Entity on a device?

 CRL timing: Should it be possible to issue CRLs before the nextCrl date in their predecessor? Are

there special considerations redistributing these CRLs as opposed to “in-cycle” CRLs?

 Revocation: How is the decision made to revoke a certificate or set of certificates?

 Misbehavior and intrusion detection: Are incoming messages monitored to determine if they are

potentially malicious? Is some networked service notified of potentially malicious messages? How

should devices respond to a misbehaving CA, for example a CA which issues some certificates that

are inconsistent with its certificate-issuance permissions?

 Hardware security requirements: What are the requirements for secure operation of a device

hosting an instance of WAVE Security Services? What protection should it provide against physical

attacks? Should it be certifiable in accordance with external standards for cryptographic modules

such as FIPS 140-2 [B8]?

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

263

 Random number generation: How do devices obtain random numbers to avoid attacks on weak

random number generators? See, for example, ANSI X9.82-1:2006 [B1], Goldberg and Wagner [B9],

NIST (SP) 800-90A [B15], and Debian security advisory [B23]. In particular, Elliptic Curve Digital

Signature Algorithm (ECDSA) is vulnerable to weak random number generators: see Howgrave-

Graham and Smart [B10], and Nguyen and Shparlinski [B16]. A strong random number generator is

necessary for both key and signature generation.

 Local considerations: What may WAVE Service Advertisements (WSAs) advertise? How are

geographic subregions defined, for example are they defined by reference to ISO 3166-2 [B14]?

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

264

Annex F

(informative)

Bibliography

[B1] ANSI X9.82-1:2006, Random Number Generation Part 1: Overview and Basic Principles, ANSI,

2006, available from http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.82-1%3a2006.

[B2] Antipa, A., D. R. Brown, R. Gallant, R. Lambert, R. Struik, and S. A, Vanstone, “Accelerated

verification of ECDSA signatures,” Selected Areas in Cryptography, 12th International Workshop, SAC

2005, Kingston, ON, Canada, pp. 307–318, Aug. 11–12, 2005.

[B3] Brown, D., R. Gallant, and S. Vanstone, “Provably secure implicit certificate schemes,” Financial

Cryptography, pp. 156–165, July 2002.

[B4] Brown, D. R. L., M. J. Campagna, and S. A. Vanstone, “Security of ECQV-Certified ECDSA Against

Passive Adversaries,” Cryptology ePrint Archive, 2009-620, Mar. 9, 2011. Available from

http://eprint.iacr.org/2009/620.pdf.

[B5] ETSI EN 302 637-2 V1.2.1 (2011-03), Technical Specification: Intelligent Transport Systems (ITS);

Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic

Service.

[B6] ETSI EN 302 637-3 V1.2.1 (2014-09), Technical Specification: Intelligent Transport Systems (ITS);

Vehicular Communications; Basic Set of Applications; Part 3: Specification of Decentralized Environmental

Notification Basic Service.

[B7] ETSI TS 103 097, Intelligent Transportation Systems (ITS); Security; Security header and certificate

formats.

[B8] FIPS Pub 140-2, Security requirements for Cryptographic Modules, Federal Information Processing

Standards Publication 140-2, U.S. Department of Commerce/N.I.S.T., Springfield, VA, June 2001

(supersedes FIPS Pub 140-1).

[B9] Goldberg, I. and D. Wagner, “Randomness and the Netscape Browser: How Secure Is the World Wide

Web?” Doctor Dobb’s Journal, Jan. 1996. Available: http://www.cs.berkeley.edu/~daw/papers/ddj-

netscape.html.

[B10] Howgrave-Graham, N. A. and N. P. Smart, “Lattice Attacks on Digital Signature Schemes,” Designs,

Codes and Cryptography, vol. 23, no. 3, pp. 283–290, Aug. 2001.

[B11] IEEE Std 802.11™, Information technology—Telecommunications and information exchange

between systems—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) specifications.18, 19

[B12] IEEE Std 1609.4™-2010, Draft Standard for Wireless Access in Vehicular Environments (WAVE)—

Multi-Channel Operation.

[B13] IETF Request for Comments: 5246, The Transport Layer Security (TLS) Protocol Version 1.2.20

18 The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics

Engineers, Inc.
19 IEEE publications are available from The Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane,

Piscataway, NJ 08854, USA (http://standards.ieee.org/).
20 IETF documents (i.e., RFCs) are available for download at http://www.rfc-archive.org/.

http://standards.ieee.org/

IEEE Std 1609.2-20XX
IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management

Messages – 1609.2 consolidated with 1609.2a

Copyright © 20XX IEEE. All rights reserved.

265

[B14] ISO 3166-2:2013, Codes for the representation of names of countries and their subdivisions—Part 2:

Country subdivision code.21

[B15] National Institute for Standards and Technology (NIST) Special Publication (SP) 800-90A,

Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Jan. 2012.

Available: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf.

[B16] Nguyen, P. and I. Shparlinski, “The Insecurity of the Elliptic Curve Digital Signature Algorithm with

Partially Known Nonces,” Designs, Codes and Cryptography, Vol. 30, No. 2, pp. 201–217, 2003.

[B17] OASIS (Organization for the Advancement of Structured Information Standards), PKCS #11

Cryptographic Token Interface Standard. Available: https://www.oasis-open.org/committees/

documents.php?wg_abbrev=pkcs11.

[B18] Pintsov, L. A. and S. A. Vanstone, “Postal revenue collection in the digital age,” Financial Cryptology,

pp. 105–120, Oct. 26, 2001.

[B19] Preciosa Project, PRECIOSA—Privacy Enabled Capability in Co-operative Systems and Safety

Applications.

[B20] SAE J2735, Dedicated Short Range Communications (DSRC) Message Set Dictionary.22

[B21] SAE J2945/1, On-Board System Requirements for V2V Safety Communications.

[B22] SeVeCom—Secure Vehicle Communication, Deliverable 1.1, VANETS Security Requirements Final

Version.

[B23] Software in the Public Interest, Inc. Debian security advisory, DSA-1571-1openssl—predictable

random number generator, 2008. Available: http://www.debian.org/security/2008/dsa-1571.

[B24] Whyte, W., A. Weimerskirch, V. Kumar, and T. Hehn, “A security credential management system for

V2V communications,” 2013 IEEE Vehicular Networking Conference (VNC), pp. 1–8, Dec. 6–18, 2013.

21 ISO publications are available from the ISO Central Secretariat (http://www.iso.org/). ISO publications are also

available in the United States from the American National Standards Institute (http://www.ansi.org/).
22 SAE publications are available from the Society of Automotive Engineers (http://www.sae.org/).

